Skip to main content
Log in

Real-time rendering of refracting transmissive objects with multi-scale rough surfaces

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents an efficient approach to render refracting transmissive objects with multi-scale surface roughness, under distant illumination. To correctly capture both fine-scale surface details and large-scale appearances, and enable real-time processing at various viewing resolutions, we first divide the surface roughness into three levels, namely, micro-scale, meso-scale and macro-scale. Each scale of roughness is modeled and evaluated using different strategies, and the overall roughness is approximated by their spherical convolution. Then, this representation is incorporated into a microfacet-based BTDF model, and multi-scale rough refractions are simulated on both front and back sides of an object as light enters and exits the object. In particular, non-linear filtering methods are applied to both macro-scale geometries and meso-scale bumps to reduce aliasing when viewed across a range of distances. Finally, experimental results illustrate that our approach produces resolution-dependent refraction effects that match super-sampled ground truth, while achieving a speed up of several orders of magnitude with hardware acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Banerjee, A., Dhillon, I.S., Ghosh, J., Sra, S.: Clustering on the unit hypersphere using von mises-fisher distributions. J. Mach. Learn. Res. 6, 1345–1382 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Bruneton, E., Neyret, F.: A survey of nonlinear prefiltering methods for efficient and accurate surface shading. IEEE Trans. Visual. Comp. Graph. 18(2), 242–260 (2012)

    Article  Google Scholar 

  3. Bruneton, E., Neyret, F., Holzschuch, N.: Real-time realistic ocean lighting using seamless transitions from geometry to brdf. Computer Graphics Forum (Proceedings of EUROGRAPHICS 2010) 29(2), 487–496 (2010)

  4. Cerezo, E., Perez-Cazorla, F., Pueyo, X., Seron, F., Sillion, F.: A survey on participating media rendering techniques. Visual Comp. 21(5), 303–328 (2005)

    Article  Google Scholar 

  5. Chan, B., Wang, W.: Geocube - gpu accelerated real-time rendering of transparency and translucency. Visual Comp. 21(8–10), 579–590 (2005)

    Article  Google Scholar 

  6. Cook, R.L., Torrance, K.E.: A reflectance model for computer graphics. ACM Trans. Graph. 1(1), 7–24 (1982)

    Article  Google Scholar 

  7. Crouse, D., Willett, P., Pattipati, K., Svensson, L.: A look at Gaussian mixture reduction algorithms. In: Proceedings of the 14th International Conference on Information Fusion, 1–8 (2011)

  8. Dai, Q., Wang, J., Liu, Y., Snyder, J., Wu, E., Guo, B.: The dual-microfacet model for capturing thin transparent slabs. Computer Graphics Forum (Proceedings of Pacific Graphics 2009) 28(7), 1917–1925 (2009)

  9. Dai, Z., Wyman, C.: Real-time rough refraction via lean mapping and gaussian sum reduction. In: Proceedings of Symposium on Interactive 3D Graphics and Games 2012, 216–216 (2012)

  10. Davis, S.T., Wyman, C.: Interactive refractions with total internal reflection. In: Proceedings of Graphics Interface 2007, 185–190 (2007)

  11. Driscoll, J.R., Healy, D.M.: Computing fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 15(2), 202–250 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dupuy, J., Heitz, E., Iehl, J.C., Poulin, P., Neyret, F., Ostromoukhov, V.: Linear efficient antialiased displacement and reflectance mapping. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia 2013) 32(6), 211:1–211:11 (2013)

  13. Eisemann, E., Décoret, X.: Fast scene voxelization and applications. In: Proceedings of Symposium on Interactive 3D Graphics and Games 2006, pp. 71–78 (2006)

  14. Fournier, A.: Normal distribution functions and multiple surfaces. In: Proceedings of Graphics Interface Workshop on Local Illumination, pp. 45–52 (1992)

  15. Génevaux, O., Larue, F., Dischler, J.M.: Interactive refraction on complex static geometry using spherical harmonics. In: Proceedings of Symposium on Interactive 3D Graphics and Games 2006, pp. 145–152 (2006)

  16. Guo, J., Pan, J.: Real-time multi-scale refraction under all-frequency environmental lighting. In: Proceedings of the 2013 International Conference on Computer-Aided Design and Computer Graphics, pp. 131–139. IEEE Computer Society, Washington, DC, USA (2013)

  17. Han, C., Sun, B., Ramamoorthi, R., Grinspun, E.: Frequency domain normal map filtering. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2007) 26(3) (2007)

  18. Heidrich, W., Seidel, H.P.: View-independent environment maps. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, pp. 39–45 (1998)

  19. Heitz, E., Neyret, F.: Representing appearance and pre-filtering subpixel data in sparse voxel octrees. In: Proceedings of the Fourth ACM SIGGRAPH / Eurographics conference on High-Performance Graphics, EGGH-HPG’12, pp. 125–134 (2012)

  20. Hensley, J., Scheuermann, T., Coombe, G., Singh, M., Lastra, A.: Fast summed-area table generation and its applications. Comp. Graph. Forum 24(3), 547–555 (2005)

    Article  Google Scholar 

  21. Hu, W., Qin, K.: Interactive approximate rendering of reflections, refractions, and caustics. IEEE Trans. Visual. Comp. Graph. 13(1), 46–57 (2007)

    Article  Google Scholar 

  22. Ihrke, I., Ziegler, G., Tevs, A., Theobalt, C., Magnor, M., Seidel, H.P.: Eikonal rendering: Efficient light transport in refractive objects. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2007) 26(3) (2007)

  23. Jakob, W.: Numerically stable sampling of the von mises fisher distribution on \(s^2\) (and other tricks). Tech. rep., Cornel University (2012)

  24. Kautz, J., Vázquez, P.P., Heidrich, W., Seidel, H.P.: Unified approach to prefiltered environment maps. In: Proceedings of the Eurographics Workshop on Rendering Techniques 2000, 185–196 (2000)

  25. Laurijssen, J., Wang, R., Dutré, P., Brown, B.J.: Fast estimation and rendering of indirect highlights. Computer Graphics Forum (Proceedings of Eurographics Symposium on Rendering 2010)

  26. Mardia, K.V., Jupp, P.E.: Directional statistics. Wiley series in probability and statistics. Wiley, Chichester (2000)

    MATH  Google Scholar 

  27. Mark, C., Křivánek, J.: Gpu-based importance sampling. In: Nguyen, H. (ed.) GPU Gems 3, pp. 459–475. Addison-Wesley Professional, Reading (2007)

  28. Olano, M., Baker, D.: LEAN mapping. In: Proceedings of Symposium on Interactive 3D Graphics and Games 2010, pp. 181–188 (2010)

  29. Oliveira, M.M., Brauwers, M.: Real-time refraction through deformable objects. In: Proceedings of Symposium on Interactive 3D Graphics and Games 2007, pp. 89–96 (2007)

  30. Pharr, M., Humphreys, G.: Physically based rendering, second edition: from theory to implementation, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2010)

    Google Scholar 

  31. Ramamoorthi, R., Hanrahan, P.: An efficient representation for irradiance environment maps. In: Proceedings of ACM SIGGRAPH 2001, pp. 497–500. ACM, New York, NY, USA (2001)

  32. de Rousiers, C., Bousseau, A., Subr, K., Holzschuch, N., Ramamoorthi, R.: Real-time rough refraction. In: Proceedings of Symposium on Interactive 3D Graphics and Games 2011, pp. 111–118 (2011)

  33. de Rousiers, C., Bousseau, A., Subr, K., Holzschuch, N., Ramamoorthi, R.: Real-time rendering of rough refraction. IEEE Trans. Visual. Comp. Graph. 18(10), 1591–1602 (2012)

    Article  Google Scholar 

  34. Schlick, C.: An inexpensive brdf model for physically-based rendering. Comp. Graph. Forum 13, 233–246 (1994)

    Article  Google Scholar 

  35. Stam, J.: An illumination model for a skin layer bounded by rough surfaces. In: Proceedings of the 12th Eurographics Conference on Rendering, pp. 39–52. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2001)

  36. Sun, X., Zhou, K., Stollnitz, E., Shi, J., Guo, B.: Interactive relighting of dynamic refractive objects. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2008) 27(3), 35:1–35:9 (2008)

  37. Tan, P., Lin, S., Quan, L., Guo, B., Shum, H.: Filtering and rendering of resolution-dependent reflectance models. IEEE Trans. Visual. Comp. Graph. 14(2), 412–425 (2008)

    Article  Google Scholar 

  38. Tan, P., Lin, S., Quan, L., Guo, B., Shum, H.Y.: Multiresolution reflectance filtering. In: Proceedings of Eurographics Symposium on Rendering 2005, pp. 111–116. Aire-la-Ville, Switzerland, Switzerland (2005)

  39. Toksvig, M.: Mipmapping normal maps. J. Graph. GPU Game Tools 10(3), 65–71 (2005)

    Article  Google Scholar 

  40. Walter, B., Marschner, S.R., Li, H., Torrance, K.E.: Microfacet models for refraction through rough surfaces. In: Proceedings of Eurographics Symposium on Rendering 2007, 195–206 (2007)

  41. Walter, B., Zhao, S., Holzschuch, N., Bala, K.: Single scattering in refractive media with triangle mesh boundaries. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2009) 28(3), 92:1–92:8 (2009)

  42. Wang, J., Ren, P., Gong, M., Snyder, J., Guo, B.: All-frequency rendering of dynamic, spatially-varying reflectance. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2009) 28(5), 133:1–133:10 (2009)

  43. Westin, S.H., Arvo, J.R., Torrance, K.E.: Predicting reflectance functions from complex surfaces. In: Proceedings of ACM SIGGRAPH 1992, pp. 255–264. ACM, New York, NY, USA (1992)

  44. Wu, H., Dorsey, J., Rushmeier, H.: Characteristic point maps. Computer Graphics Forum (Proceedings of Eurographics Symposium on Rendering 2009) 28(4), 1227–1236 (2009)

  45. Wu, H., Dorsey, J., Rushmeier, H.: Physically-based interactive bi-scale material design. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia 2011) 30, 145:1–145:10 (2011)

  46. Wyman, C.: An approximate image-space approach for interactive refraction. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2005) 24(3), 1050–1053 (2005)

  47. Wyman, C.: Interactive image-space refraction of nearby geometry. In: Proceedings of GRAPHITE 2005, 205–211 (2005)

  48. Yan, L.Q., Hašan, M., Jakob, W., Lawrence, J., Marschner, S., Ramamoorthi, R.: Rendering glints on high-resolution normal-mapped specular surfaces. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2014) 33(4), 116:1–116:9 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Pan, JG. Real-time rendering of refracting transmissive objects with multi-scale rough surfaces. Vis Comput 32, 1579–1592 (2016). https://doi.org/10.1007/s00371-015-1141-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1141-8

Keywords

Navigation