Skip to main content

Advertisement

Log in

3D point of interest detection via spectral irregularity diffusion

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents a method for detecting points of interest on 3D meshes. It comprises two major stages. In the first, we capture saliency in the spectral domain by detecting spectral irregularities of a mesh. Such saliency corresponds to the interesting portions of surface in the spatial domain. In the second stage, to transfer saliency information from the spectral domain to the spatial domain, we rely on spectral irregularity diffusion (SID) based on heat diffusion. SID captures not only the information about neighbourhoods of a given point in a multiscale manner, but also cues related to the global structure of a shape. It thus preserves information about both local and global saliency. We finally extract points of interest by looking for global and local maxima of the saliency map. We demonstrate the advantages of our proposed method using both visual and quantitative comparisons based on a publicly available benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Bronstein, M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: Proc. CVPR, pp. 1704–1711 (2010)

    Google Scholar 

  2. Castellani, U., Cristani, M., Fantoni, S., Murino, V.: Sparse points matching by combining 3d mesh saliency with statistical descriptors. In: Proc. Eurographics, pp. 643–652 (2008)

    Google Scholar 

  3. Chen, X., Saparov, A., Pang, B., Funkhouser, T.: Schelling points on 3D surface meshes. In: Proc. SIGGRAPH (2012)

    Google Scholar 

  4. Chung, M., Taylor, J.: Diffusion smoothing on brain surface via finite element method. In: IEEE International Symposium on Biomedical Imaging, pp. 432–435 (2004)

    Google Scholar 

  5. Dong, S., Bremer, P.T., Garland, M., Pascucci, V., Hart, J.C.: Spectral surface quadrangulation. In: Proc. SIGGRAPH, pp. 1057–1066 (2006)

    Google Scholar 

  6. Dutagaci, H., Cheung, C., Godil, A.: Evaluation of 3d interest point detection techniques via human-generated ground truth. Vis. Comput. 28, 901–917 (2012)

    Article  Google Scholar 

  7. Gebal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape analysis using the auto diffusion function. Comput. Graph. Forum 28(5), 1405–1413 (2009)

    Article  Google Scholar 

  8. Gelfand, N., Mitra, N., Guibas, L., Pottmann, H.: Robust global registration. In: Proc. SGP, pp. 197–206 (2005)

    Google Scholar 

  9. Godil, A., Wagan, A.: Salient local 3d features for 3d shape retrieval. In: Proc. SPIE (2011)

    Google Scholar 

  10. Guo, C., Zhang, L.: A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Trans. Image Process. 19(1), 185–198 (2010)

    Article  MathSciNet  Google Scholar 

  11. Hagen, L., Kahng, A.: New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 11(9), 1074–1085 (1992)

    Article  Google Scholar 

  12. Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: Proc. CVPR, pp. 1–8 (2007)

    Google Scholar 

  13. Hu, J., Hua, J.: Salient spectral geometric features for shape matching and retrieval. Vis. Comput. 25(5), 667–675 (2009)

    Article  Google Scholar 

  14. Koch, C., Poggio, T.: Predicting the visual world: silence is golden. Nat. Neurosci. 2, 9–10 (1999)

    Article  Google Scholar 

  15. Koenderink, J.: The structure of images. Biol. Cybern. 50(5), 363–370 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lee, C., Varshney, A., Jacobs, D.: Mesh saliency. In: Proc. SIGGRAPH (2005)

    Google Scholar 

  17. Lévy, B., Zhang, H.R.: Spectral mesh processing. In: SIGGRAPH Courses, pp. 8:1–8:312 (2010)

    Google Scholar 

  18. Li, J., Levine, M.D., An, X., Xu, X., He, H.: Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans. Pattern Anal. Mach. Intell. 99(PrePrints) (2012)

  19. Liu, Y., Zha, H., Qin, H.: Shape topics: a compact representation and new algorithms for 3d partial shape retrieval. In: Proc. CVPR, vol. 2, pp. 2025–2032 (2006)

    Google Scholar 

  20. Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3d object retrieval from cluttered scenes. Int. J. Comput. Vis. 89(2), 348–361 (2010)

    Article  Google Scholar 

  21. Novatnack, J., Nishino, K.: Scale-dependent 3d geometric features. In: Proc. ICCV, pp. 1–8 (2007)

    Google Scholar 

  22. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Seo, S., Chung, M., Vorperian, H.: Heat kernel smoothing using Laplace-Beltrami eigenfunctions. In: Proc. MICCAI, pp. 505–512 (2010)

    Google Scholar 

  24. Shilane, P., Funkhouser, T.: Selecting distinctive 3d shape descriptors for similarity retrieval. In: Proc. SMI (2006)

    Google Scholar 

  25. Sipiran, I., Bustos, B.: Harris 3d: a robust extension of the Harris operator for interest point detection on 3d meshes. Vis. Comput. 27(11), 963–976 (2011)

    Article  Google Scholar 

  26. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Proc. SGP, pp. 1383–1392 (2009)

    Google Scholar 

  27. Vallet, B., Lévy, B.: Spectral geometry processing with manifold harmonics. In: Computer Graphics Forum, vol. 27, pp. 251–260 (2008)

    Google Scholar 

  28. Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface feature detection and description with applications to mesh matching. In: Proc. CVPR, pp. 373–380 (2009)

    Google Scholar 

  29. Zou, G., Hua, J., Dong, M., Qin, H.: Surface matching with salient keypoints in geodesic scale space. Comput. Animat. Virtual Worlds 19(3–4), 399–410 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding by HEFCW/WAG on the RIVIC project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, R., Liu, Y., Martin, R.R. et al. 3D point of interest detection via spectral irregularity diffusion. Vis Comput 29, 695–705 (2013). https://doi.org/10.1007/s00371-013-0806-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0806-4

Keywords