Skip to main content
Log in

3D flow features visualization via fuzzy clustering

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

A key approach to visualizing a flow field is to emphasize regions with significant behavior. However, it is difficult to give concrete criteria for classifying feature regions. In this paper, we use a novel framework in which fuzzy sets are used to determine flow features: Fuzzy relationships assess structural properties of features. A fuzzy c-means-like clustering algorithm is used to evaluate the importance of each voxel. Our approach can be readily modified with new fuzzy relationships describing other features of interest to users. We use a multi-resolution approach which displays structural features in greater detail, and represents the background by coarse-grained information. Experiments on synthetic and real datasets show that our framework can highlight significant aspects of the whole flow while avoiding occlusion and clutter. Interactive performance is achieved via a GPU implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Botchen, R.P., Lauser, A., Weiskopf, D., Ertl, T.: Flow feature visualization using logical operators on multivariate fields. In: International Symposium on Flow Visualization (2008)

    Google Scholar 

  2. Garth, C., Tricoche, X.: Topology- and feature-based flow visualization: methods and applications. In: SIAM Conference on Geometric Design and Computing (2005)

    Google Scholar 

  3. Helgeland, A., Elboth, T.: High-quality and interactive animations of 3D time-varying vector fields. IEEE Comput. Graph. Appl. 12(6), 1535–1546 (2006)

    Google Scholar 

  4. Helman, J.L., Hesselink, L.: Visualizing vector field topology in fluid flows. IEEE Comput. Graph. Appl. 11(3), 36–46 (1991)

    Article  Google Scholar 

  5. Jänicke, H., Wiebel, A., Scheuermann, G., Kollmann, W.: Multifield visualization using local statistical complexity. IEEE Trans. Vis. Comput. Graph. 13(6), 1384–1391 (2007)

    Article  Google Scholar 

  6. JEONG, J., HUSSAIN, F.: On the identification of a vortex. J. Fluid Mech. 28(5), 69–95 (1995)

    Article  MathSciNet  Google Scholar 

  7. Kruger, J., Kipfer, P., Kondratieva, P., Westermann, R.: A particle system for interactive visualization of 3D flows. IEEE Trans. Vis. Comput. Graph. 11(6), 744–756 (2005)

    Article  Google Scholar 

  8. NVIDIA: Nvidia CUDA programming guide (version 2.2.1) (2010)

  9. Pal, K., King, R.A.: On edge detection of x-ray images using fuzzy set. IEEE Trans. Pattern Anal. Mach. Intell. 1(5), 69–77 (1983)

    Article  Google Scholar 

  10. Park, S.W., Yu, H., Hotz, I., Kreylos, O., Linsen, L., Hamann, B.: Structure-accentuating dense flow visualization. In: Eurographics /IEEE VGTC Symposium on Visualization, pp. 131–138 (2006)

    Google Scholar 

  11. Peikert, R., Sadlo, F.: Topologically relevant stream surfaces for flow visualization. In: Spring Conference on Computer Graphics, pp. 43–50 (2009)

    Google Scholar 

  12. Petz, C., Kasten, J., Prohaska, S., Hege, H.C.: Hierarchical vortex regions in swirling flow. Comput. Graph. Forum 28(3), 863–870 (2009)

    Article  Google Scholar 

  13. Post, F.H., Vrolijk, B., Hauser, H., Laramee, R.S., Doleisch, H.: The state of the art in flow visualization: feature extraction and tracking. Comput. Graph. Forum 22(4), 775–792 (2003)

    Article  Google Scholar 

  14. Salzbrunn, T., Jn̈icke, H., Wischgoll, T., Scheuermann, G.: The state of the art in flow visualization: partition-based techniques. In: Simulation and Visualization, pp. 75–92 (2008)

    Google Scholar 

  15. Salzbrunn, T., Scheuermann, G.: Streamline predicates. IEEE Trans. Vis. Comput. Graph. 12(6), 1601–1612 (2006)

    Article  Google Scholar 

  16. Schafhitzel, T., Vollrath, J.E., Gois, J.P., Weiskopf, D., Castelo, A., Ertl, T.: Topology-preserving lambda 2-based vortex core line detection for flow visualization. Comput. Graph. Forum 27(3), 1023–1030 (2008)

    Article  Google Scholar 

  17. Stegmaier, S., Rist, U., Ertl, T.: Opening the can of worms: An exploration tool for vortical flows. In: IEEE Visualization, pp. 463–470 (2005)

    Google Scholar 

  18. Sujudi, D., Haimes, R.: Identification of swirling flow in 3d vector fields. In: Proceedings of AIAA 12th Computational Fluid Dynamics Conference, pp. 1695–1715 (1995)

    Google Scholar 

  19. Timm, H., Borgelt, C., Doring, C., Kruse, R.: An extension to possibilistic fuzzy cluster analysis. Fuzzy Sets Syst. 147(1), 3–16 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Weinkauf, T., Sahner, J., Günther, B., Theisel, H., Hege, H.C., Thiele, F.: Feature-based analysis of a multi-parameter flow simulation. In: Simulation and Visualization, pp. 237–252 (2008)

    Google Scholar 

  21. Weinkauf, T., Sahner, J., Theisel, H., Hege, H.C.: Cores of swirling particle motion in unsteady flows. IEEE Trans. Vis. Comput. Graph. 13(6), 1759–1766 (2007)

    Article  Google Scholar 

  22. Weinkauf, T., Theisel, H., Shi, K., Hege, H.C., Seidel, H.P.: Extracting higher order critical points and topological simplification of 3D vector fields. In: IEEE Visualization, pp. 559–556 (2005)

    Google Scholar 

  23. Wu, K., Liu, Z., Zhang, S., Moorhead, R.J. II: Topology-aware evenly spaced streamline placement. IEEE Trans. Visual. Comput. Graph. 99(3) (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Quan Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Cheng, ZQ., Martin, R.R. et al. 3D flow features visualization via fuzzy clustering. Vis Comput 27, 441–449 (2011). https://doi.org/10.1007/s00371-011-0577-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0577-8

Keywords

Navigation