Skip to main content
Log in

3D shape metamorphosis based on T-spline level sets

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We propose a new method for 3D shape metamorphosis, where the in-between objects are constructed by using T-spline scalar functions. The use of T-spline level sets offers several advantages: First, it is convenient to handle complex topology changes without the need of model parameterization. Second, the constructed objects are smooth (C2 in our case). Third, high quality meshes can be easily obtained by using the marching triangulation method. Fourth, the distribution of the degrees of freedom can be adapted to the geometry of the object.

Given one source object and one target object, we firstly find a global coordinate transformation to approximately align the two objects. The T-spline control grid is adaptively generated according to the geometry of the aligned objects, and the initial T-spline level set is found by approximating the signed distance function of the source object. Then we use an evolution process, which is governed by a combination of the signed distance function of the target object and a curvature-dependent speed function, to deform the T-spline level set until it converges to the target shape. Additional intermediate objects are inserted at the beginning/end of the sequence of generated T-spline level sets, by gradually projecting the source/target object to the initial/final T-spline level set. A fully automatic algorithm is developed for the above procedures. Experimental results are presented to demonstrate the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexa, M.: Recent advances in mesh morphing. Comput. Graph. Forum 21(2), 173–197 (2002)

    Article  Google Scholar 

  2. Bao, H., Peng, Q.: Interactive 3D morphing. Comput. Graph. Forum 17(3), 23–30 (1998)

    Article  Google Scholar 

  3. Bao, Y., Guo, X., Qin, H.: Physically based morphing of point-sampled surfaces: animating geometrical models. Comput. Animat. Virtual Worlds 16(3–4), 509–518 (2005)

    Article  Google Scholar 

  4. Beier, T., Neely, S.: Feature-based image metamorphosis. In: Proceedings of SIGGRAPH’92, pp. 35–42. ACM Press, New York, NY (1992)

    Google Scholar 

  5. Botsch, M., Bommes, D., Kobbelt, L.: Efficient linear system solvers for mesh processing. In: Martin, R., Bez, H., Sabin, M. (eds.) Mathematics of Surfaces XI. LNCS, vol. 3604, pp. 62–83. Springer, Berlin (2005)

    Chapter  Google Scholar 

  6. Breen, D.E., Whitaker, R.T.: A level-set approach for the metamorphosis of solid models. IEEE Trans. Vis. Comput. Graph. 7(2), 173–192 (2001)

    Article  Google Scholar 

  7. Chen, M., Jones, M.W., Townsend, P.: Volume distortion and morphing using disk fields. Comput. Graph. 20(4), 567–575 (1996)

    Article  Google Scholar 

  8. Cohen-Or, D., Solomovic, A., Levin, D.: Three-dimensional distance field metamorphosis. ACM Trans. Graph. 17(2), 116–141 (1998)

    Article  Google Scholar 

  9. Galin, E., Akkouche, S.: Blob metamorphosis based on Minkowski sums. Comput. Graph. Forum (Eurographics’96) 15(3), 143–152 (1996)

    Article  Google Scholar 

  10. Hartmann, E.: A marching method for the triangulation of surfaces. Vis. Comput. 14(3), 95–108 (1998)

    Article  MATH  Google Scholar 

  11. He, T., Wang, S., Kaufman, A.: Wavelet-based volume morphing. In: Proceedings of VIS’94, pp. 85–92. IEEE Computer Society Press, Los Alamitos, CA (1994)

    Google Scholar 

  12. Hughes, J.F.: Scheduled Fourier volume morphing. In: Proceedings of SIGGRAPH’92, pp. 43–46. ACM Press, New York, NY (1992)

    Google Scholar 

  13. Jin, X., Liu, S., Wang, C.L., Feng, J., Sun, H.: Blob-based liquid morphing. J. Vis. Comput. Animat. 16(3–4), 391–403 (2005)

    Google Scholar 

  14. Kanai, T., Suzuki, H., Kimura, F.: Metamorphosis of arbitrary triangular meshes. IEEE Comput. Graph. Appl. 20(2), 62–75 (2000)

    Article  Google Scholar 

  15. Kaul, A., Rossignac, J.: Solid-interpolating deformations: construction and animation of PIPS. In: Proceedings of Eurographics’91, pp. 493–505. Elsevier Science Publishers, Vienna, Austria (1991)

    Google Scholar 

  16. Kraevoy, V., Sheffer, A.: Cross-parameterization and compatible remeshing of 3d models. ACM Trans. Graph. (SIGGRAPH’04) 23(3), 861–869 (2004)

    Article  Google Scholar 

  17. Lazarus, F., Verroust, A.: Three-dimensional metamorphosis: a survey. Vis. Comput. 14(8–9), 373–389 (1998)

    Article  Google Scholar 

  18. Lee, T.Y., Yao, C.Y., Chu, H.K., Tai, M.J., Chen, C.C.: Generating genus-n-to-m mesh morphing using spherical parameterization. J. Vis. Comput. Animat. 17(3–4), 433–443 (2006)

    Google Scholar 

  19. Lerios, A., Garfinkle, C.D., Levoy, M.: Feature-based volume metamorphosis. In: Proceedings of SIGGRAPH’95, pp. 449–456. ACM Press, New York, NY (1995)

    Google Scholar 

  20. Nieda, T., Pasko, A., Kunii, T.L.: Detection and classification of topological evolution for linear metamorphosis. Vis. Comput. 22(5), 346–356 (2006)

    Article  Google Scholar 

  21. Pasko, A., Adzhiev, V., Sourin, A., Savchenko, V.: Function representation in geometric modeling: concepts, implementation and applications. Vis. Comput. 11(8), 429–446 (1995)

    Google Scholar 

  22. Payne, B., Toga, A.: Distance field manipulation of surface models. IEEE Comput. Graph. Appl. 12(1), 65–71 (1992)

    Article  MATH  Google Scholar 

  23. Rossignac, J., Kaul, A.: AGRELS and BIBs: metamorphosis as a Bézier curve in the space of polyhedra. In: Proceedings of Eurographics’94, pp. 179–184. Elsevier Science Publishers, Oslo, Norway (1994)

    Google Scholar 

  24. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. ACM Trans. Graph. 22(3), 477–484 (2003)

    Article  Google Scholar 

  25. Shoemake, K.: Animating rotation with quaternion curves. In: Proceedings of SIGGRAPH’85, pp. 245–254. ACM Press, New York, NY (1985)

    Google Scholar 

  26. Turk, G., O’Brien, J.F.: Shape transformation using variational implicit functions. In: Proceedings of SIGGRAPH’99, pp. 335–342. ACM Press, New York, NY (1999)

    Google Scholar 

  27. Yan, H.B., Hu, S.M., Martin, R.: 3D morphing using strain field interpolation. J. Comput. Sci. Technol. 22(1), 147–155 (2007)

    Article  Google Scholar 

  28. Yang, H., Fuchs, M., Jüttler, B., Scherzer, O.: Evolution of T-spline level sets with distance field constraints for geometry reconstruction and image segmentation. Technical Report 01, http://www.ig.jku.at. Cited (2005)

  29. Yang, H., Fuchs, M., Jüttler, B., Scherzer, O.: Evolution of T-spline level sets with distance field constraints for geometry reconstruction and image segmentation. In: Proceedings of SMI’06, pp. 247–252. IEEE Computer Society Press, Matsushima, Japan (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiping Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Jüttler, B. 3D shape metamorphosis based on T-spline level sets. Visual Comput 23, 1015–1025 (2007). https://doi.org/10.1007/s00371-007-0168-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-007-0168-x

Keywords

Navigation