Skip to main content
Log in

Device-based decision-making for adaptation of three-dimensional content

  • Special Issue Paper
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The goal of this research was the creation of an adaptation mechanism for the delivery of three-dimensional content. The adaptation of content, for various network and terminal capabilities – as well as for different user preferences, is a key feature that needs to be investigated. Current state-of-the art research of the adaptation shows promising results for specific tasks and limited types of content, but is still not well-suited for massive heterogeneous environments. In this research, we present a method for transmitting adapted three-dimensional content to multiple target devices. This paper presents some theoretical and practical methods for adapting three-dimensional content, which includes shapes and animation. We also discuss practical details of the integration of our methods into MPEG-21 and MPEG-4 architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adelson, E.: Mechanisms for motion perception. Optics &Photonics News 2(8), 24–30 (1991)

    Google Scholar 

  2. Aggarwal, A., Regunatha, S., Rose, K.: Compander domain approach to scalable AAC. Proceedings 110-th Audio Engineering Society Convention (2001)

  3. Ahn, J., Wohn, K.: Motion Level-of-Detail: A simplification method for crowd scene. Proceedings Computer Animation and Social Agents (CASA), pp. 129–137 (2004)

  4. Amielh, M., Devillers, S.: Multimedia content adaptation with XML. Proceedings International Conference on Multimedia Modeling (MMM), pp. 127–145 (2001)

  5. Amielh, M., Devillers, S.: Bitstream syntax description language: application of xml-schema to multimedia content adaptation. Proceedings 11-th International WWW Conference: CDROM (2002)

  6. Berka, R.: Reduction of Computations in physics-based animation using level of detail. Spring Conference on Computer Graphics, pp. 69–76. Comenius University (1997)

  7. Carlson, D., Hodgins, J.: Simulation of levels of detail for real-time animation. Proc. Graphics Interface, pp. 1–8. ACM (1997)

  8. Chen, B., Nishita, T.: Multiresolution streaming mesh with shape preserving and QoS-like controlling. Proceedings 3D Web Technology, pp. 35–42. ACM (2002)

  9. Cohen, J., Varshney, A., Manocha, D., Turk, G., Weber, H., Agarwal P., Brooks, F., Wright, W.: Simplification envelopes. Proceedings ACM SIGGRAPH, pp. 119–128 (1996)

  10. Cohen, J., Olano, M., Manocha, D.: Appearance preserving simplification. Proceedings ACM SIGGRAPH, pp. 115–112 (1998)

  11. Debunne, G., Desburn, M., Cani, M., Barr, A.: Dynamic real-time deformations using space and time adaptive sampling. Proceedings ACM SIGGRAPH, pp. 31–36 (2001)

  12. DeHaemer, M., Zyda, M.: Simplification of objects rendered by polygonal approximations. Comput. Graphics 15(2), 175–184 (1991)

    Article  Google Scholar 

  13. Di Giacomo, T., Capo, S., Faure, F.: An interactive forest. Proceedings Eurographics Workshop on Computer Animation and Simulation, pp. 65–74 (2001)

  14. Di Giacomo, T., Joslin, C., Garchery, S., Magnenat-Thalmann, N.: Adaptation of virtual human animation and representation for MPEG. Comput. Graphics 28(4), 65–74 (2004)

    Google Scholar 

  15. Distler, H., Gegenfurtner, K., VanVeen, H., Hawken, M.: Velocity constancy in a virtual reality environment. Perception 29(12), 1423–1435 (2000)

    Article  Google Scholar 

  16. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. Proceedings ACM SIGGRAPH, pp. 173–182 (1995)

  17. Fogel, E., Cohen-Or, D., Ironi, D., Zvi, T.: A web architecture for progressive delivery of 3d content. Proceedings 3D Web Technology, pp. 35–41. ACM (2001)

  18. Funkhouser, T., Sequin, C.: Adaptive display algorithms for interactive frame rates during visualization of complex virtual environments. Proceedings ACM SIGGRAPH, pp. 247–254 (1993)

  19. Garland, M., Heckbert, P.: Simplifying surfaces with color and texture using quadric error metrics. Proc. IEEE Visualization, pp. 263–270 (1998)

  20. Giang, T., Mooney, R., Peters, C., O’Sullivan, C.: ALOHA: adaptive level of detail for human animation towards a new framework. Proceedings Eurographics, pp. 71–77 (2000)

  21. Granieri, J., Crabtree, J., Badler, N.: Production and playback of human figure motion for visual simulation. ACM Trans. on Modeling and Computer Simulation 5(3), 222–241 (1995)

    Article  Google Scholar 

  22. Heckbert, P., Garland, M.: Multiresolution modeling for fast rendering. Proceedings Graphics Interface, pp. 43–50 (1994)

  23. Heckbert, P., Rossignac, J., Hoppe, H., Schroeder, W., Soucy, M., Varsney, A.: Multiresolution surface modeling course. ACM SIGGRAPH, Course 25 (1997)

  24. Hoeting, J., Madigan, D., Raftery, A., Volinsky, C.: Bayesian model averaging: a tutorial. Statist. Sci. 14(4), 382–417 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hoppe, H.: Progressive meshes. Proceedings ACM SIGGRAPH, pp. 99–108 (1996)

  26. Hoppe, H.: View-dependent refinement of progressive meshes. Proceedings ACM SIGGRAPH, pp. 189–198 (1997)

  27. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. Proceedings ACM SIGGRAPH, pp. 19–26 (1993)

  28. Hutchinson, D., Preston, M., Hewitt, T.: Adaptive refinement for mass/spring simulations. Proc. EUROGRAPHICS Workshop on Computer Animation and Simulation, pp. 31–45 (1996)

  29. Joslin, C., Magnenat-Thalmann, N.: MPEG-4 animation clustering for networked virtual environments. IEEE Conference on Multimedia and Expo (ICME): CDROM (2004)

  30. Kourtzi, Z., Shiffrar, M.: Dynamic representations of human body movement. Perception 28(1), 49–62 (1999)

    Article  Google Scholar 

  31. Lindstrom, P., Turk, G.: Image-driven mesh optimization. ACM Trans. on Graph. 19(3), 204–241 (2000)

    Article  Google Scholar 

  32. Multimedia Framework (MPEG-21) Part 7: Digital Item Adaptation; ISO/IEC JTC 1/SC 29/WG 11/FDIS 21000-7:2004

  33. Ohshima, T., Yamamoto, H., Tamura, H.: Gaze-directed adaptive rendering for interacting with virtual space. Proceedings Virtual Reality Annual International Symposium (VRAIS), pp. 103–110. IEEE Computer Society (1996)

  34. Ponder, M., Papagiannakis, G., Molet, T., Magnenat-Thalmann, N., Thalmann, D.: VHD++ development framework: towards extendible, component based vr/ar simulation engine featuring advanced virtual character technologies. Proceedings Computer Graphics International (CGI), pp. 96–104. IEEE Computer Society (2003)

  35. Soucy, M., Laurendeau, D.: Multiresolution surface modeling based on hierarchical triangulation. Comput. Vision Image Understand. 63(1), 1–14 (1996)

    Article  Google Scholar 

  36. SPECViewPerf 7.1.1: http://www.spec.org/gpc/opc.static/viewperf71info.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Seok Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Joslin, C., Di Giacomo, T. et al. Device-based decision-making for adaptation of three-dimensional content. Visual Comput 22, 332–345 (2006). https://doi.org/10.1007/s00371-006-0009-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-006-0009-3

Keywords

Navigation