Skip to main content

Advertisement

Log in

Meta-heuristic multidisciplinary design optimization of wind turbine blades obtained from circular pipes

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Aim of this paper is to present a methodology useful to optimize the geometry of the blades of a small-size wind turbine which are obtained from a circular pipe: an optimal chord distribution and airfoil sweep can be obtained with a proper cutting path. A strong reduction in manufacturing costs and time can be achieved for blades which are a critical element in wind turbine systems, especially in case of renewable plants in developing countries. An algorithm has been developed to obtain the shape of the blades and wind turbine performances are computed by the Blade-Element Method, due to its low computational simplicity; the XFoil tool has been used to compute the aerodynamic of the blades. Heuristic algorithms have been applied to obtain a feasible design solution assuring the best efficiency of the wind turbine. Also structural considerations are kept into account to provide a feasible configuration able to withstand the forces acting on the rotating blades. Results obtained suggest that an optimal design of such a kind of blades can be obtained thanks to this methodology. The mathematical framework developed for the optimization is efficient and the heuristics algorithms allow the convergence to feasible configurations. The computing time is compatible with a practical application of the method also in industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

a:

Axial induction factor (–)

a c :

Critical axial induction factor (–)

a′:

Angular induction factor (–)

A 1, A 2 :

Coefficients for the lift Viterna model (–)

AR:

Blade aspect ratio (–)

B 1, B 2 :

Coefficients for the drag Viterna model (–)

C D :

Local drag coefficient (–)

C Dmax :

Maximum lift coefficient (–)

C L :

Local lift coefficient (–)

C Lstall :

Local stall lift coefficient (–)

ch:

Chord of the airfoil (m)

ch_a :

Chord of the tip section (m)

ch_b :

Chord of the intermediate section (m)

ch_c :

Chord of the root section (m)

D :

Pipe diameter (m)

dis_d :

Position of the tip section chord (m)

dis_e :

Position of the intermediate section chord (m)

dis_f :

Position of the root section chord (m)

F x :

Axial force (N)

FS:

Airfoil scale factor (–)

K :

Correction factor in Glauert equation (–)

len_l :

Blade span (m)

len_g :

Distance tip/intermediate section (m)

len_h :

Distance tip/rotation centre (m)

N :

Number of blades (–)

r :

Radius measured from wind turbine hub (m)

R :

Radius of the wind turbine from rotation axis (m)

Q :

Factor for tip loss (–)

s :

Pipe thickness (m)

T :

Torque (Nm)

t :

Parameter along Bezier curve (0 ÷ 1)

V :

Wind speed (m/s)

W :

Speed of the flow impacting the airfoil (m/s)

X LE, Z LE :

Coordinates of the airfoil leading edge (m)

X TE, Z TE :

Coordinates of the airfoil trailing edge (m)

x i, y i :

Chord points’ coordinates in the plane (m)

X i, Y i, Z i :

Chord points’ coordinates respect to blade longitudinal axis (m)

X i_up, Y i_up, Z i_up :

Coordinates of the airfoil upper surface (m)

X i_down, Y i_down, Z i_down :

Coordinates of the airfoil lower surface (m)

x i_rot, y i_rot :

Rotated chord points’ coordinates in the plane (m)

x i_lean, y i_lean, z i_lean :

Coordinates of the projection chord points on the pipe (m)

α :

Blade angle of attack (rad)

α stall :

Blade stall angle of attack (rad)

β :

Relative flow angle on the blades (rad)

λ r :

Tip–speed ratio at radius r (–)

γ 0 :

Airfoil settling angle (rad)

γ rot :

Blade geometry rotation angle (rad)

Ω :

Blade rotational speed (rad/s)

ω :

Wake rotational speed (rad/s)

ρ :

Air density (kg/m3)

σ′ :

Local solidity (–)

τ :

Airfoil inclination angle on the pipe (rad)

References

  1. Manwell JF, McGowan JG, Rogers AL, (2009) Wind energy explained: theory, design and application, 2nd edn. Wiley, Hoboken, NJ. ISBN: 978-0-470-01500-1

    Book  Google Scholar 

  2. Walker JF, Jenkins N (1997) Wind energy technology. UNESCO energy engineering series. Wiley, Hoboken, NJ. ISBN-13: 978-0471960447

    Google Scholar 

  3. Scheubel PJ, Crossley RJ (2012) Wind turbine blade design. Energies 5(9):3425–3434

    Article  Google Scholar 

  4. Burton T, Jenkins N, Sharpe D, Bossanyi E (2011). Wind energy handbook. Wiley, Hoboken, NJ

    Book  Google Scholar 

  5. Ragheb M, Ragheb AM (2011) Wind turbines theory—The Betz equation and optimal rotor tip speed ratio. In: Carriveau R (ed) Fundamental and advanced topics in wind power, chap 2. ISBN 978-953-307-508-2

  6. Grasso F (2011) Usage of numerical optimization in wind turbine airfoil design. J Aircr 48(1):248–255

    Article  Google Scholar 

  7. Drela M (2017) XFOIL user guide, MIT, Boston, USA. http://web.mit.edu/drela/Public/web/xfoil/. Accessed on Jan 2017

  8. Li JY, Li R, Gao Y, Huang J (2010) Aerodynamic optimization of wind turbine airfoils using response surface techniques. Proc Inst Mech Eng Part A J Power Energy 224(6):827–838

    Article  Google Scholar 

  9. Méndez J, Greiner D (2006) Wind blade chord and twist angle optimization using genetic algorithms. In: Fifth international conference on engineering computational technology, Las Palmas de Gran Canaria, Spain, pp 12–15

  10. Hampsey (2012) Multiobjective evolutionary optimisation of small wind turbine blades, PhD thesis at the Discipline of Mechanical Engineering-University of Newcastle (N.S.W.), Australia, August 2002, pp 1–468

  11. Tangler J, Kocurek D (2005) Wind turbine post-stall airfoil performance characteristics guidelines for blade-element momentum methods. In: 43rd AIAA Aerospace sciences meeting and exhibit. January 10–13, Reno, Nevada (USA)

  12. Viterna LA, Corrigan RD (1981) Fixed pitch rotor performance of large horizontal axis wind turbines, DOE/NASA workshop on large horizontal axis wind turbines. Cleveland, Ohio, July 1981

  13. Kenway G, Martins JRRA (2008) Aerostructural shape optimization of wind turbine blades considering site-specific winds. In: Proceedings of 12th AIAA/ISSMO multidisciplinary analysis and optimization conference. University of Toronto Institute for Aerospace Studies, Victoria, British Columbia, Canada. Toronto, Ontario, Canada

  14. Sorensen JN, Shen WZ (2002) Numerical modelling of wind turbine wakes. J Fluids Eng 124(2):393–399

    Article  Google Scholar 

  15. Hansen AC, Butterfield CP (1993) Aerodynamics of horizontal-axis wind turbines. Annu Rev Fluid Mech 25(1):115–149

    Article  Google Scholar 

  16. Kusiak A, Zheng H (2010) Optimization of wind turbine energy and power factor with an evolutionary computation algorithm. Energy 35(3):1324–1332. ISSN 0360-5442

    Article  Google Scholar 

  17. Lee KH, Kim KH, Lee KT, Park JP, Lee DH (2010) Two-step optimization for wind turbine blade with probability approach. J Sol Energy Eng 132(3):034503-1, 034503-5

    Article  Google Scholar 

  18. Jureczko MEZYK, Pawlak M, Mężyk A (2005) Optimisation of wind turbine blades. J Mater Process Technol 167(2):463–471

    Article  Google Scholar 

  19. Song F, Ni Y, Tan Z (2011) Optimization design, modeling and dynamic analysis for composite wind turbine blade. Proc Eng 16:369–375

    Article  Google Scholar 

  20. Ingram G (2005) Wind turbine blade analysis using the blade element momentum method. Version 1.0. School of Engineering. Durham University, Durham

    Google Scholar 

  21. Wilkes CE, Summers JW, Daniels CA, Berard MT (2005) PVC handbook, Hanser, Munich. ISBN 9781569903797

    Google Scholar 

  22. Fishman GS (1995) Monte Carlo: concepts, algorithms, and applications. Springer, New York. ISBN 0-387-94527-X

    MATH  Google Scholar 

  23. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  MathSciNet  Google Scholar 

  24. Hoos HH, Stützle T (2005) Stochastic local search: foundations and applications. Elsevier, Amsterdam

    MATH  Google Scholar 

  25. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley Pub. Co, Reading

    MATH  Google Scholar 

  26. Kennedy J, Eberhart R, Shi Y (2001) Swarm intelligence, 1st edn. Morgan Kaufmann, Burlington, MA. ISBN: 9780080518268

    Google Scholar 

  27. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang XS (2005) Biology-derived algorithms in engineering optimizaton (Chap. 32). In: Olarius S, Zomaya AY (eds) Handbook of bioinspired algorithms and applications. Chapman & Hall/CRC, London

    Google Scholar 

  29. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm for optimization inspired by imperialistic competition. IEEE Congress in Evolutionary Computation, Singapore

    Book  Google Scholar 

  30. Duan H, Liu S, Lei X (2008) Air robot path planning based on Intelligent Water Drops optimization. In: IEEE IJCNN 2008, pp 1397–1401

  31. Shah-Hosseini H (2009) The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. Int J BioInspir Comput 1(1–2):71–79

    Article  Google Scholar 

  32. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8(1):687–697

    Article  Google Scholar 

  33. Timmis J, Neal M, Hunt J (2000) An artificial immune system for data analysis. BioSystems 55(1):143–150

    Article  Google Scholar 

  34. Hsiao Y, Chuang CL, Jiang JA, Chien CC (2005) A novel optimization algorithm: space gravitational optimization. In: IEEE Xplore conference: IEEE international conference on systems, man and cybernetics, vol 3

  35. Ahrari A, Atai AA (2010) Grenade explosion method—a novel tool for optimization of multimodal functions. Appl Soft Comput 10(4):1132–1140

    Article  Google Scholar 

  36. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315

    Article  Google Scholar 

  37. Repinšek M, Liu SH, Mernik L (2012) A note on teaching-learning-based optimization algorithm. Inf Sci Int J 212:79–93. https://doi.org/10.1016/j.ins.2012.05.009

    Google Scholar 

  38. Tornabene F, Ceruti A (2013) Mixed static and dynamic optimization of four-parameter functionally graded completely doubly curved and degenerate shells and panels using GDQ method. Math Probl Eng 2013:1–33. https://doi.org/10.1155/2013/867079 (Article ID 867079)

    Article  MathSciNet  Google Scholar 

  39. Ceruti A (2013) Design and heuristic optimization of low temperature differential stirling engine for water pumping. Int J Heat Technol 31(1):9–16

    Google Scholar 

  40. Ceruti A, Voloshin V, Marzocca P (2014) Heuristic algorithms applied to multidisciplinary design optimization of unconventional airship configuration. J Aircr J Aircr 51(6):1758–1772

    Article  Google Scholar 

  41. Ceruti A, Marzocca P, (2017) Heuristic optimization of Bezier curves based trajectories for unconventional airships docking. Aircr Eng Aerosp Technol 89(1):76–86. https://doi.org/10.1108/AEAT-11-2014-0200

    Article  Google Scholar 

  42. Frulla G, Gili P, Visone M, D’Oriano V, Lappa M (2015) A practical engineering approach to the design and manufacturing of a mini kW bladewind turbine: definition, optimization and CFD analysis. Fluid Dyn Mater Process 11(3):257–277

    Google Scholar 

  43. Hepperle M (2007) JavaFoil User’s Guide. http://www.mh-aerotools.de/airfoils/java/JavaFoil%20Users%20Guide.pdf. Accessed Jan 2017

  44. Pelletier A, Mueller TJ (2000) Low reynolds number aerodynamics of low-aspect-ratio, thin/flat/cambered-plate wings. J Aircr 37(5):825–832

    Article  Google Scholar 

  45. Autodesk® AutoCAD 2012 DXF Reference. https://images.autodesk.com/adsk/files/autocad_2012_pdf_dxf-reference_enu.pdf. Accessed Dec 2016

  46. Burton T, Jenkins N, Sharpe D, Bossanyi E, (2001) Wind energy handbook, Wiley, Hoboken. ISBN: 978-0-470-69975-1

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Ceruti.

Appendix

Appendix

As already introduced in the Sect. 3 of the paper, the basic methodology to optimize wind turbine blades comes from the integration of Momentum Theory and Blade-Element Model. The Momentum Theory finds the axial force and torque of a wind turbine evaluating the behaviour of the air stream through the area swept by the wind turbine blades.

In Momentum Theory [4], the kinetic energy of the air flow passing through the wind turbine and the quantity of motion are equated, and the axial force on the turbine disk area (Fig. 16) can be computed with:

Fig. 16
figure 16

Turbine axial view

$${\text{d}}{F_x}=Q\rho V_{1}^{2}[4a(1 - a)]\pi r{\text{d}}r,$$
(38)

where V1 is the velocity of the undisturbed air flow before the wind turbine (Fig. 17). In a similar manner, the torque generated by the air flow over the blades can be evaluated with:

Fig. 17
figure 17

Wind turbine side view

$${\text{d}}T=Q4a^{\prime}(1 - a)\rho V\Omega {r^3}\pi {\text{d}}r.$$
(39)

The losses on the blades can be accounted with the following equation, function of the radial distance from the turbine hub:

$$Q=\frac{2}{\pi }\arccos \left[ {\exp \left\{ { - \left( {\frac{{(N/2)\left[ {1 - r/R} \right]}}{{(r/R)\cos \beta }}} \right)} \right\}} \right].$$
(40)

The Blade-Element Theory exploits the aerodynamics to compute the axial force and torque on the wind turbine: the integral of the lift and drag of the blade airfoils along the span is required in this approach. Once defined the rotational speed of the wind turbine blades (Ω) and the speed of the rotational wake (ω), the axial induction factor (a) and the angular induction factor (a′) can be defined as follows (see also Fig. 17):

$$a^{\prime}=\frac{\omega }{{2\Omega }};\,a=\frac{{{V_1} - {V_2}}}{{{V_1}}}.$$
(41)

Considering the triangle of the air relative speed over a rotating blade (see Fig. 18), the following formula applies:

Fig. 18
figure 18

Wind turbine speed triangle

$$\Omega r+\frac{{\omega r}}{2}=\Omega r(1+a^{\prime}).$$
(42)

The settling angle (γ) depends on the blade geometry, while the angle between wind turbine hub axis and the relative air speed acting on the blade (β) can be found with:

$$\tan \beta =\frac{{\Omega r(1+a^{\prime})}}{{V(1 - a)}}.$$
(43)

The local tip ratio (λr) is an index of the ratio between wind turbine rotational speed and the speed of the undisturbed axial wind flow:

$${\lambda _r}=\frac{{\Omega r}}{V}.$$
(44)

Following the rules of the trigonometry, the relative speed impacting the blade sections can be found with:

$$W=\frac{{V(1 - a)}}{{\cos \beta }}.$$
(45)

The axial force acting on the infinitesimal area of the blade surface dS given by the local chord (c) multiplied by dr is:

$${\text{d}}{F_x}=\sigma ^{\prime}\pi \rho \frac{{{V^2}{{\left( {1 - a} \right)}^2}}}{{{{\cos }^2}\beta }}({c_{\text{L}}}\sin \beta +{c_{\text{D}}}\cos \beta )r{\text{d}}r,$$
(46)

where CL and CD are lift and drag airfoil non-dimensional coefficients. A similar formula can be derived for the torque on the infinitesimal surface:

$${\text{d}}T=\sigma ^{\prime}\pi \rho \frac{{{V^2}{{\left( {1 - a} \right)}^2}}}{{{{\cos }^2}\beta }}\left( {{c_{\text{L}}}\cos \beta - {c_{\text{D}}}\sin \beta } \right){r^2}{\text{d}}r.$$
(47)

In the previous formulas, the local solidity (σ′) has been introduced:

$$\sigma ^{\prime}=\frac{{{\text{Nc}}}}{{2\pi r}}.$$
(48)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceruti, A. Meta-heuristic multidisciplinary design optimization of wind turbine blades obtained from circular pipes. Engineering with Computers 35, 363–379 (2019). https://doi.org/10.1007/s00366-018-0604-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-018-0604-8

Keywords

Navigation