Skip to main content
Log in

Influence surfaces by boundary element/least square methods coupling

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This work presents a new application for calculating the influence surfaces of transverse displacements, directional derivatives and bending moments for generic bridge decks. A plate bending boundary element method formulation is coupled with the application of a continuous field surface derived by the least square procedure. This original BE formulation permits calculating influence surfaces of plates with polygonal, curved or circular geometry, and several transverse load conditions. The proposal allows future analysis of building floors and single and continuous bridge trusses connected to longitudinal and transversal girders. Numerical examples are presented to demonstrate the potential of the present formulation and the results are compared with analytical values and with usual vehicular loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. AASHTO (1983) Standard specifications for highway bridges, 13th edn. AASHTO, Washington

    Google Scholar 

  2. Abdel-akher A, Hartley GA (1989) Evaluation of boundary integrals for plate bending. Int J Num Meth Eng 28(2):75–93. doi:10.1002/nme.1620280107)

    Article  MathSciNet  MATH  Google Scholar 

  3. Almeida VS, Paiva JB (2004) A mixed BEM-FEM formulation for layered soil-superstructure interaction. Eng Anal Bound Elem 28:1111–1121

    Article  MATH  Google Scholar 

  4. Almeida VS, Paiva JB (2007) Static analysis of soil/pile interaction in layered soil by BEM/BEM coupling. Adv Eng Softw 38:835–845

    Article  Google Scholar 

  5. Beskos DE (1991) Boundary element analysis of plates and shells. Springer, Berlin

    Book  Google Scholar 

  6. Bezine G (1978) Boundary integral formulation for plate flexure with arbitrary boundary conditions. Mech Res Commun 5(4):197–206

    Article  MATH  Google Scholar 

  7. Botta AS, Venturini WS, Benallal A (2005) BEM applied to damage models emphasizing localization and associated regularization techniques. Eng Anal Bound Elem 29:814–827

    Article  MATH  Google Scholar 

  8. Citarella R, Cricrì G (2009) A two-parameter model for crack growth simulation by combined FEM-DBEM approach. Adv Eng Softw 40(5):363–377

    Article  MATH  Google Scholar 

  9. Citarella R, Cricrì G (2010) Comparison of DBEM and FEM crack path predictions in a notched shaft under torsion. Eng Fract Mech 77(11):1730–1749

    Article  Google Scholar 

  10. DIN (1072) Straßen und Wegbrücken. Lastannahmen, Dezember 1985

    Google Scholar 

  11. Fernandes GR (2009) A BEM formulation for linear bending analysis of plates reinforced by beams considering different materials. Eng Anal Bound Elem 33(8–9):1132–1140

    Article  MathSciNet  MATH  Google Scholar 

  12. Fudoli CA, Benallal A, Venturini WS (2002) An implicit BEM formulation for gradient plasticity and localization phenomena. Int J Num Meth Eng 53:1853–1869

    Article  MATH  Google Scholar 

  13. Hammer PC, Marlowe OJ, Stroud AH (1956) Numerical integration over simplexes and cones. Math Tables Other Aids Comput 10:130–137

    Article  MathSciNet  MATH  Google Scholar 

  14. Hansen EB (1976) Numerical solution of integro-differential and singular integral equations for plate bending problems. J Elast 6(1):39–56

    Article  MathSciNet  MATH  Google Scholar 

  15. Hartmann F, Zotemantel R (1986) The direct boundary element method in plate bending. Int J Num Meth Eng 23(11):2049–2069

    Article  MATH  Google Scholar 

  16. Hwu Ch (2012) Boundary element formulation for the coupled stretching–bending analysis of thin laminated plates. Eng Anal Bound Elem 36(6):1027–1039

    Article  MathSciNet  MATH  Google Scholar 

  17. Kong J (2009) A practical method to determine critical moments of bridge decks using the method of least squares and spreadsheets. In: Yuan Y, Cui J, Mang HA (Eds.) Proceedings of the international symposium on computational structural engineering, held in Shanghai, China, June 22–24

  18. Lawson C, Hanson R (1974) Solving least squares problems. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  19. Lee DT, Schachter BJ (1980) Two algorithms for construction ga Delaunay triangulation. Int J Comput Inform Sci 9(3):219–242

    Article  MathSciNet  MATH  Google Scholar 

  20. Memari AM, West HH (1991) Computation of bridge design forces from influence surfaces. Comput Struct 38(5/6):547–556

    Article  MATH  Google Scholar 

  21. Oliveira Neto L, Paiva JB (1993) Analysis of curved plates by the Boundary Element Method. Eng Anal Bound Elem 12:57–64

    Article  Google Scholar 

  22. Oliveira Neto L, Paiva JB (2003) A special BEM for elastostatic analysis of building floor slabs on columns. Comput Struct 81(6):359–372

    Article  Google Scholar 

  23. Orakdogan E, Girgin KM (2005) A direct determination of influence lines and surfaces by FEM. Struct Eng Mech 20(3):279–292

    Article  Google Scholar 

  24. Paiva JB, Venturini WS (1987) Analysis of building structures considering plate-beam-column interactions. In: Brebbia CA, Venturini WS (eds.), Boundary element techniques, CML Publ., Southampton

  25. Paiva WP, Sollero P, Albuquerque EL (2011) Modal analysis of anisotropic plates using the boundary element method. Eng Anal Bound Elem 35(12):1248–1255

    Article  MathSciNet  MATH  Google Scholar 

  26. Palermo L Jr (2012) The tangential differential operator applied to a stress boundary integral equation for plate bending including the shear deformation effect. Eng Anal Bound Elem 36(8):1213–1225

    Article  MathSciNet  Google Scholar 

  27. Paris F, Leon S (1986) Simply supported plates by boundary integral equation method. Int J Num Meth Eng 23:173–191

    Article  MATH  Google Scholar 

  28. Pucher A (1977) Influence surfaces of elastic plates. Springer, New York

    Book  Google Scholar 

  29. Rashed YF (2008) A relative quantity integral equation formulation for evaluation of boundary stress resultants in shear deformable plate bending problems. Eng Anal Bound Elem 32(2):152–161

    Article  MathSciNet  MATH  Google Scholar 

  30. Rusch H, Hergenroder A (1964) Influence surfaces for moments in skew slabs. (Translation from the German). Cement and Concrete Association

  31. Rusch EH (1965) Berechnungstafeln fur rechtwinklige Fahrbahnplatten von Strabenbrucken. Verlag von Wilhelm Ernst & Sohn, Berlin

    Google Scholar 

  32. Sapountzakis EJ, Mokos VG (2008) An improved model for the analysis of plates stiffened by parallel beams with deformable connection. Comput Struct 86(23–24):2166–2181

    Article  Google Scholar 

  33. Shao W, Wu X (2011) Fourier differential quadrature method for irregular thin plate bending problems on Winkler foundation. Eng Anal Bound Elem 35(3):389–394

    Article  MathSciNet  MATH  Google Scholar 

  34. Shen W (1992) The generalized Muller-Breslau principle for higher-order elements. Comput Struct 44:207–212

    Article  MATH  Google Scholar 

  35. Song GS, Mukherjee S (1986) Boundary element method analysis of bending of elastic plates of arbitrary shape with general boundary conditions. Eng Anal 3(1):36–44

    Article  Google Scholar 

  36. Stern MA (1979) General boundary integral formulation for the numerical solution of plate bending problems. Int J Solids Struct 15:769–782

    Article  MathSciNet  MATH  Google Scholar 

  37. Tan F, Zhang YL (2013) The regular hybrid boundary node method in the analysis of thin plate structures subjected to a concentrated load. Eur J Mech A/Solids 38:79–89

    Article  MathSciNet  Google Scholar 

  38. Tan F, Zhang YL, Wang YH (2011) A meshless hybrid boundary node method for Kirchhoff plate bending problems. CMES Comput Model Eng Sci 75(1):1–31

    MathSciNet  Google Scholar 

  39. Timoshenko S (1940) Theory of plates and shells. Mcgraw-Hill, New York

    MATH  Google Scholar 

  40. Tottenham H (1979) The boundary element method for plates and shells. In: Banerjee PK, Butterfield R (eds) Developments boundary element methods 1. Applied Science Publ, London, pp 173–205

    Google Scholar 

  41. Waidemam L, Venturini WS (2009) An extended BEM formulation for plates reinforced by rectangular beams. Eng Anal Bound Elem 33(7):983–992

    Article  MathSciNet  MATH  Google Scholar 

  42. Wu BC, Altiero NJ (1979) A boundary integral method applied to plates of arbitrary plan form and arbitrary boundary conditions. Comput Struct 10:703–707

    Article  MathSciNet  MATH  Google Scholar 

  43. Xia P, Long SY, Cui HX, Li GY (2009) The static and free vibration analysis of a nonhomogeneous moderately thick plate using the meshless local radial point interpolation method. Eng Anal Bound Elem 33(6):770–777

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Structural and Foundation Engineering, School of Engineering of the University of São Paulo (EPUSP) for the financial support to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luttgardes de Oliveira Neto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, V.d., Oliveira Neto, L.d. Influence surfaces by boundary element/least square methods coupling. Engineering with Computers 32, 231–246 (2016). https://doi.org/10.1007/s00366-015-0412-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-015-0412-3

Keywords

Navigation