Skip to main content
Log in

Optimal Meshes for Finite Elements of Arbitrary Order

  • Published:
Constructive Approximation Aims and scope

Abstract

Given a function f defined on a bounded domain Ω⊂ℝ2 and a number N>0, we study the properties of the triangulation \(\mathcal{T}_{N}\) that minimizes the distance between f and its interpolation on the associated finite element space, over all triangulations of at most N elements. The error is studied in the norm X=L p for 1≤p≤∞, and we consider Lagrange finite elements of arbitrary polynomial degree m−1. We establish sharp asymptotic error estimates as N→+∞ when the optimal anisotropic triangulation is used, recovering the results on piecewise linear interpolation (Babenko et al. in East J. Approx. 12(1), 71–101, 2006; Babenko, submitted; Chen et al. in Math. Comput. 76, 179–204, 2007) and improving the results on higher degree interpolation (Cao in SIAM J. Numer. Anal. 45(6), 2368–2391, 2007, SIAM J. Sci. Comput. 29, 756–781, 2007, Math. Comput. 77, 265–286, 2008). These estimates involve invariant polynomials applied to the m-th order derivatives of f. In addition, our analysis also provides practical strategies for designing meshes such that the interpolation error satisfies the optimal estimate up to a fixed multiplicative constant. We partially extend our results to higher dimensions for finite elements on simplicial partitions of a domain Ω⊂ℝd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics. Teubner, Stuttgart (1999)

    Google Scholar 

  2. Babenko, V., Babenko, Y., Ligun, A., Shumeiko, A.: On asymptotical behavior of the optimal linear spline interpolation error of C 2 functions. East J. Approx. 12(1), 71–101 (2006)

    MathSciNet  Google Scholar 

  3. Babenko, Y., Babenko, V., Ligun, A., Shumeiko, A.: On asymptotical behavior of the optimal linear spline interpolation error of C 2 functions. East J. Approx. 12(1), 71–101 (2006)

    MathSciNet  Google Scholar 

  4. Bocher, M.: Introduction to Higher Algebra. Courier Dover Publications (2004). ISBN 0486495701, 9780486495705

  5. Boissonnat, J.-D., Wormser, C., Yvinec, M.: Locally uniform anisotropic meshing. In: Proceedings of the Twenty-Fourth Annual Symposium on Computational Geometry, 2008

  6. Bougleux, S., Peyré, G., Cohen, L.D.: Anisotropic geodesics for perceptual grouping and domain meshing. In: Proc. Tenth European Conference on Computer Vision (ECCV’08), Marseille, France, October 12–18, 2008

  7. Bourgault, Y., Picasso, M., Alauzet, F., Loseille, A.: On the use of anisotropic error estimators for the adaptative solution of 3-D inviscid compressible flows. Int. J. Numer. Methods Fluids 59(1), 47–74 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cao, W.: An interpolation error estimate on anisotropic meshes in ℝn and optimal metrics for mesh refinement. SIAM J. Numer. Anal. 45(6), 2368–2391 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cao, W.: Anisotropic measure of third order derivatives and the quadratic interpolation error on triangular elements. SIAM J. Sci. Comput. 29, 756–781 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cao, W.: An interpolation error estimate in ℝ2 based on the anisotropic measures of higher order derivatives. Math. Comput. 77, 265–286 (2008)

    Article  MATH  Google Scholar 

  11. Chen, L., Sun, P., Xu, J.: Optimal anisotropic meshes for minimizing interpolation error in L p-norm. Math. Comput. 76, 179–204 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cohen, A., Dyn, N., Hecht, F., Mirebeau, J.-M.: Adaptive multiresolution analysis based on anisotropic triangulations. Preprint, Laboratoire J.-L. Lions (2008, submitted)

  13. Dixmier, J.: Quelques aspects de la théorie des invariants. Gaz. Math. 43, 39–64 (1990)

    MATH  MathSciNet  Google Scholar 

  14. Frey, P.J., George, P.L.: Mesh Generation. Application to Finite Elements, 2nd edn. ISTE, London, Wiley, Hoboken (2008)

  15. Hartshorne, R.: Algebraic Geometry. Springer, New York (1999)

    Google Scholar 

  16. Hilbert, D.: Theory of Algebraic Invariants. Cambridge University Press, Cambridge (1993). Translated by R. C. Laubenbacher

    MATH  Google Scholar 

  17. Labelle, F., Shewchuk, J.R.: Anisotropic Voronoi diagrams and guaranteed-quality anisotropic mesh generation. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, pp. 191–200 (2003)

  18. Lang, S.: Algebra. Graduate Texts in Mathematics, vol. 211. Springer, New York (2004). (Corrected 4th printing, revised 3rd edn.) ISBN 978-0-387-95385-4

    Google Scholar 

  19. Olver, P.J., Sapiro, G., Tannenbaum, A.: Affine invariant detection; edge maps, anisotropic diffusion and active contours. Acta Appl. Math. 59, 45–77 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Salmon, G.: Higher Plane Curves, 3rd edn. (1879). http://www.archive.org/details/117724690

  21. ShewChuk, J.R.: What is a good linear finite element. www.cs.berkeley.edu/~jrs/papers/elemj.pdf

  22. A mathematica code for the map π h π . www.ann.jussieu.fr/~mirebeau/

  23. The 2-d anisotropic mesh generator BAMG. http://www.freefem.org/ff++/ (included in the FreeFem++ software)

  24. A 3-d anisotropic mesh generator. http://www.math.u-bordeaux1.fr/~dobj/logiciels/mmg3d.php

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Mirebeau.

Additional information

Communicated by Wolfgang Dahmen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirebeau, JM. Optimal Meshes for Finite Elements of Arbitrary Order. Constr Approx 32, 339–383 (2010). https://doi.org/10.1007/s00365-010-9090-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-010-9090-y

Keywords

Mathematics Subject Classification (2000)

Navigation