Skip to main content
Log in

Evidence for transporter-mediated uptake of environmental l-glutamate in a freshwater sponge, Ephydatia muelleri

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The freshwater sponge, Ephydatia muelleri, lacks a nervous or endocrine system and yet it exhibits a coordinated whole-body action known as a “sneeze” that can be triggered by exposure to l-glutamate. It is not known how l-glutamate is obtained by E. muelleri in sufficient quantities (i.e., 70 µM) to mediate this response endogenously. The present study tested the hypothesis that l-glutamate can be directly acquired from the environment across the body surface of E. muelleri. We demonstrate carrier mediated uptake of two distinct saturable systems with maximal transport rates (Jmax) of 64.27 ± 4.98 and 25.12 ± 1.87 pmols mg−1 min−1, respectively. The latter system has a higher calculated substrate affinity (Km) of 2.87 ± 0.38 µM compared to the former (8.75 ± 1.00 µM), indicative of distinct systems that can acquire l-glutamate at variable environmental concentrations. Further characterization revealed potential shared pathways of l-glutamate uptake with other negatively charged amino acids, namely d-glutamate and l-aspartate, as well as the neutral amino acid L-alanine. We demonstrate that l-glutamate uptake does not appear to rely on exogenous sodium or proton concentrations as removal of these ions from the bathing media did not significantly alter uptake. Likewise, l-glutamate uptake does not seem to rely on internal proton motive forces driven by VHA as application of 100 nM of the VHA inhibitor bafilomycin did not alter uptake rates within E. muelleri tissues. Whether the acquired amino acid is used to supplement feeding or is stored and accumulated to mediate the sneeze response remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data is publicly available at https://doi.org/10.17632/54zmgtkp2t.1.

References

  • Adams EDM, Goss GG, Leys SP (2010) Freshwater sponges have functional, sealing epithelia with high transepithelial resistance and negative transepithelial potential. PLoS ONE 5:1–7

    Article  Google Scholar 

  • Allemand D, Derenzis G, Payan P et al (1988) HgCl2-induced cell injury—differential-effects on membrane-located transport-systems in unfertilized and fertilized sea-urchin eggs. Toxicology 50:217–230

    Article  CAS  PubMed  Google Scholar 

  • Allman E, Johnson D, Nehrke K (2009) Loss of the apical V-ATPase a-subunit VHA-6 prevents acidification of the intestinal lumen during a rhythmic behavior in C. elegans. Am J Physiol Cell Physiol 297(5):C1071–C1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Applebaum SL, Ginsburg DW, Capron CS, Manahan DT (2013) Expression of amino acid transproter genes in developmental stages and adult tissues of Antarctic echinoderms. Polar Biol 36:1257–1267

    Article  Google Scholar 

  • Barbeau M, Reiswig H, Rath L (1989) Hatching of freshwater sponge gemmules after low temperature exposure: Ephydatia mülleri (Porifera: Spongillidae). J Therm Biol 14:225–231

    Article  Google Scholar 

  • Barber A, Dean JI, Jordana R, Ponz F (1989) Sugar and amino-acid intestinal transport-systems in land snail Helix aspersa. Rev Esp Fisiol 45:215–224

    PubMed  Google Scholar 

  • Bart M, Mueller B, Rombouts T et al (2021) Dissolved organic carbon (DOC) is essential to balance the metabolic demands of four dominant North-Atlantic deep-sea sponges. Limnol Oceanogr 66:925–938

    Article  CAS  Google Scholar 

  • Blewett TA, Goss GG (2017) A novel pathway of nutrient absorption in crustaceans: branchial amino acid uptake in the green shore crab (Carcinus maenas). Proc R Soc B 284:20171298. https://doi.org/10.1098/rspb.2017.1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buck M, Schlichter D (1987) Driving forces for the uphill transport of amino-acids into epidermal brush-border membrane-vesicles of the sea-anemone, Anemonia sulcata (Cnidaria, Anthozoa). Comp Biochem Physiol a: Mol Integr Physiol 88:273–279

    Article  Google Scholar 

  • Callow P, Read DA (1981) Transepidermal uptake of the amino acid leucine by freshwater triclads. Comp Biochem Physiol 69:443–448

    Article  Google Scholar 

  • Canul-Tec JC, Assal R, Cirri E et al (2017) Structure and allosteric inhibition of excitatory amino acid transporter 1. Nature 544:446–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Goeij J, De Kluijver A, Van Duyl F et al (2009) Cell kinetics of the marine sponge Halisarca caerulea reveal rapid cell turnover and shedding. J Exp Biol 212:3892–3900

    Article  PubMed  Google Scholar 

  • de Goeij J, van Oevelen D, Vermeij M et al (2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–110

    Article  PubMed  Google Scholar 

  • De Vos L, Van de Vyver G (1981) Etude de la contraction spontanée chez l’éponge d’eau douce Ephydatia fluviatilis cultivée in vitro. Ann De La Soc Royale Zool De Belg 111:21–31

    Google Scholar 

  • Dean JI, Barber A, Ponz F (1987) Neutral amino-acid-transport by snail (Helix aspersa) intestine. Comp Biochem Physiol a: Mol Integr Physiol 87:573–577

    Article  Google Scholar 

  • Dröse S, Karlheinz A (1997) Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases. J Exp 200(1):1–8. https://doi.org/10.1242/jeb.200.1.1

    Article  Google Scholar 

  • Dugan HA, Bartlett SL, Burke SM et al (2017) Salting our freshwater lakes. Proc Natl Acad Sci 114:4453–4458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eaton P, Thomas JD (1999) The accumulation and metabolism of amino acids by Biomphalaria glabrata, a freshwater pulmonate snail. Comp Biochem Physiol a: Mol Integr Physiol 122:421–428. https://doi.org/10.1016/S1095-6433(99)00025-2

    Article  Google Scholar 

  • Elliott GRD, Leys SP (2007) Coordinated contractions effectively expel water from the aquiferous system of a freshwater sponge. J Exp Biol 210:3736–3748

    Article  PubMed  Google Scholar 

  • Elliott GRD, Leys SP (2010) Evidence for glutamate, GABA and NO in coordinating behaviour in the sponge, Ephydatia muelleri (Demospongiae, Spongillidae). J Exp Biol 213:2310–2321

    Article  CAS  PubMed  Google Scholar 

  • Ellwanger K, Eich A, Nickel M (2007) GABA and glutamate specifically induce contractions in the sponge Tethya wilhelma. J Comp Physiol A 193:1–11

    Article  CAS  Google Scholar 

  • Epel D (1972) Activation of an Na+-dependent amino-acid transport-system upon fertilization of sea-urchin eggs. Exp Cell Res 72:74–89

    Article  CAS  PubMed  Google Scholar 

  • Gomme J (2001) Transport of exogenous organic substances by invertebrate integuments: the field revisited. J Exp Biol 289:254–265

    CAS  Google Scholar 

  • Hornak K, Schmidheiny H, Pernthaler J (2016) High-throughput determination of dissolved free amino acids in unconcentrated freshwater by ion-pairing liquid chromatography and mass spectrometry. J Chromatogr A 1440:85–93

    Article  CAS  PubMed  Google Scholar 

  • Jeffs SA, Arme C (1987) Echinococcus-granulosus - specificity of amino-acid transport-systems in protoscoleces. Parasitology 95:71–78

    Article  CAS  PubMed  Google Scholar 

  • Kanai Y, Clemencon B, Simonin A et al (2013) The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol Aspects Med 34:108–120

    Article  CAS  PubMed  Google Scholar 

  • Katayama N, Makoto K, Kishida O (2016) An aquatic vertebrate can use amino acids from environmental water. Proc R Soc B 283:20160996. https://doi.org/10.1098/rspb.2016.0996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenny NJ, Francis WR, Rivera-Vicens RE et al (2020) Tracing animal genomic evolution with the chromosomal-level assembly of the freshwater sponge Ephydatia muelleri. Nat Commun 11:3676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornder N, Esser Y, Stoupin D et al (2022) Sponges sneeze mucus to shed particulate waste from their seawater inlet pores. Curr Biol 32:3855–3861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuznetsova M, Lee C, Aller J, Frew N (2004) Enrichment of amino acids in the sea surface microlayer at coastal and open ocean sites in the North Atlantic Ocean. Limnol Oceanogr 49:1605–1619

    Article  CAS  Google Scholar 

  • Lewerenz J, Hewett S, Huang Y et al (2013) The cystine/glutamate antiporter system xc- in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18:522–555. https://doi.org/10.1089/ars.2011.4391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leys SP (2015) Elements of a “nervous system” in sponges. J Exp Biol 218:581–591

    Article  PubMed  Google Scholar 

  • Leys SP, Grombacher L, Hill AL, Leys SP, Grombacher L, Hill A (2019) Hatching and freezing gemmules from the freshwater sponge Ephydatia muelleri. Protocols.io Dx. https://doi.org/10.17504/protocols.io.863hzgn

    Article  Google Scholar 

  • Lin CLG, Orlov I, Ruggiero AM et al (2001) Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3-18. Nature 410:84–88

    Article  CAS  PubMed  Google Scholar 

  • Ludeman DA, Farrar N, Riesgo A et al (2014) Evolutionary origins of sensation in metazoans: functional evidence for a new sensory organ in sponges. BMC Evol Biol. https://doi.org/10.1186/1471-2148-14-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Mah JL, Leys SP (2017) Think like a sponge: the genetic signal of sensory cells in sponges. Dev Biol 431:93–100

    Article  CAS  PubMed  Google Scholar 

  • Manahan DT, Jaeckle WB, Nourizadeh SD (1989) Ontogenic changes in the rates of amino-acid transport from seawater by marine invertebrate larvae (Echinodermata, Echiura, Mollusca). Biological Bulletin 176 (2), 161–168. Biol Bull 176:161–168

    Article  CAS  Google Scholar 

  • Matsuo H, Kanai Y, Kim JY et al (2002) Identification of a Novel Na+-independent acidic amino acid transporter with structural similarity to the member of a heterodimeric amino acid transporter family associated with unknown heavy chains. J Biol Chem 277:21017–21026. https://doi.org/10.1074/jbc.M200019200

    Article  CAS  PubMed  Google Scholar 

  • Maxson ME, Grinstein S (2014) The vacuolar type H+-ATPase at a glance - more than a proton pump. J Cell Sci 127(23):4987–4993

    Article  PubMed  Google Scholar 

  • Mazzoli R, Pessione E (2016) The neuro-endocrinological role of microbial glutamate and GABA signaling. Front Microbiol 30:7

    Google Scholar 

  • Mensink MA, Frijlink HW, van der Voort MK, Hinrichs WLJ (2015) Inulin, a flexible oligosaccharide I: review of its physicochemical characteristics. Carbohyd Polym 130:405–419

    Article  CAS  Google Scholar 

  • Meyer E, Manahan DT (2009) Nutrient uptake by marine invertebrates: cloning and functional analysis of amino acid transporter genes in developing sea urchins (Strongylocentrotus purpuratus). Biol Bull 217:6–24

    Article  PubMed  Google Scholar 

  • Mim C, Balani P, Rauen T, Grewer C (2005) The glutamate transporter subtypes EAAT4 and EAATs 1–3 transport glutamate with dramatically different kinetics and voltage dependence but share a common uptake mechanism. J Gen Physiol 126:571–589. https://doi.org/10.1085/jgp.200509365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyaji T, Echigo N, Hiasa M et al (2008) Identification of a vesicular aspartate transporter. Proc Natl Acad Sci USA 105:11720–11724. https://doi.org/10.1073/pnas.0804015105

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgan IJ, Potts WTW, Oates K (1994) Intracellular ion concentrations in branchial epithelial cells of brown trout (Salmo Trutta L.) determined by x-ray microanalysis. J Exp Biol 194:139–151. https://doi.org/10.1242/jeb.194.1.139

    Article  CAS  PubMed  Google Scholar 

  • Nickel M (2010) Evolutionary emergence of synaptic nervous systems: what can we learn from the non-synaptic, nerveless Porifera? Invertebr Biol 129:1–16

    Article  Google Scholar 

  • Palacín M, Estévez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78:969–1054. https://doi.org/10.1152/physrev.1998.78.4.969

    Article  PubMed  Google Scholar 

  • Pavans de Ceccatty M, Thiney Y, Garrone R (1970) Les bases ultrastructurales des communications intercellulaires dans les oscules de quelques éponges. Academic Press, London

    Google Scholar 

  • Rasmont R (1961) A technique for rearing fresh-water sponges in a controlled environment. Ann Soc Roy Zool Belgique 91:147–155

    Google Scholar 

  • Reimer RJ (2013) SLC17: a functionally diverse family of organic anion transporters. Mol Aspects Med 34:350–359. https://doi.org/10.1016/j.mam.2012.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice MA, Wallis K, Stephens GC (1980) Influx and net flux of amino-acids into larval and juvenile European flat oysters, Ostrea-edulis (L.). J Exp Mar Biol Ecol 48:51–59

    Article  CAS  Google Scholar 

  • Shigeri Y, Seal RP, Shimamoto K (2004) Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Rev 45:250–265. https://doi.org/10.1016/j.brainresrev.2004.04.004

    Article  CAS  PubMed  Google Scholar 

  • Smith QR (2000) Transport of glutamate and other amino acids at the blood-brain barrier. J Nutr 130:1016S-1022S. https://doi.org/10.1093/jn/130.4.1016S

    Article  CAS  PubMed  Google Scholar 

  • Strekal TA, McDiffett W (1974) Factors affecting germination, growth, and distribution of freshwater sponge, Spongilla fragilis Leidy (Porifera). Biol Bull 146:267–278

    Article  CAS  PubMed  Google Scholar 

  • Sugden S, Holert J, Cardenas E et al (2022) Microbiome of the freshwater sponge Ephydatia muelleri shares compositional and functional similarities with those of marine sponges. Isme j 16:2503–2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas JD (1997) The role of dissolved organic matter, particularly free amino acids and humic substances, in freshwater ecosystems. Freshw Biol 38(1):1–36

    Article  CAS  Google Scholar 

  • Tresguerres M (2016) Novel and potential physiological roles of vacuolar-type H+-ATPase in marine organisms. J Exp Biol 219(14):2088–2097

    Article  PubMed  Google Scholar 

  • Umesh A, Cohen BN, Ross LS, Gill SS (2003) Functional characterization of a glutamate/aspartate transporter from the mosquito Aedes aegypti. J Exp Biol 206:2241–2255. https://doi.org/10.1242/jeb.00430

    Article  CAS  PubMed  Google Scholar 

  • Windsor P, Leys SP (2010) Wnt signalling and induction in the sponge aquiferous system: evidence for an ancient origin of the organizer. Evolution Dev 12:481–490

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks to the University of Alberta Department of Biological Sciences for the use of their communal scintillation counter during experiments.

Funding

NSERC Discovery Grants to SPL (2016–05446), GGG (#702306) and TAB (2020-04153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamzin A. Blewett.

Ethics declarations

Competing interests

No competing interests declared.

Additional information

Communicated by Todd Gillis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weinrauch, A.M., Dumar, Z.J., Overduin, S.L. et al. Evidence for transporter-mediated uptake of environmental l-glutamate in a freshwater sponge, Ephydatia muelleri. J Comp Physiol B 194, 121–130 (2024). https://doi.org/10.1007/s00360-024-01544-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-024-01544-6

Keywords

Navigation