Skip to main content
Log in

Nitric oxide metabolites in hypoxia, freezing, and hibernation of the wood frog, Rana sylvatica

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) is a gaseous free radical that in diverse organisms performs many signaling and protective functions, such as vasoregulation, inhibition of apoptosis, antioxidation, and metabolic suppression. Increased availability of NO may be especially important during life-history periods when organisms contend with multiple stresses. We investigated dynamics of the NO metabolites, nitrite (NO2) and nitrate (NO3), in the blood plasma, heart, liver, and skeletal muscle of the wood frog (Rana sylvatica), an amphibian that endures chronic cold, freezing, hypoxia, dehydration, and extended aphagia during hibernation. We found elevated concentrations of NO2 and/or NO3 in the plasma (up to 4.1-fold), heart (3.1-fold), and liver (up to 4.1-fold) of frogs subjected to experimental hypoxia (24 h, 4 °C), and in the liver (up to 3.8-fold) of experimentally frozen frogs (48 h, − 2.5 °C), suggesting that increased NO availability aids in survival of these stresses. During a 38-week period of simulated hibernation, NO2 and/or NO3 increased in the plasma (up to 10.4-fold), heart (up to 3.3-fold), and liver (5.0-fold) during an initial 5-week winter-acclimatization regimen and generally remained elevated thereafter. In hibernation, plasma NO2 was higher in frogs indigenous to Interior Alaska than in conspecifics from a temperate locale (southern Ohio), suggesting that NO availability is matched to the severity of environmental conditions prevailing in winter. The comparatively high NO availability in R. sylvatica, a stress-tolerant species, together with published values for other species, suggest that the NO protection system is of general importance in the stress adaptation of vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Benhar M (2015) Nitric oxide and the thioredoxin system: a complex interplay in redox regulation. Biochim Biophys Acta 1850:2476–2484

    Article  CAS  PubMed  Google Scholar 

  • Bickler PE, Buck LT (2007) Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu Rev Physiol 69:145–170

    Article  CAS  PubMed  Google Scholar 

  • Costanzo JP, Lee RE (2005) Cryoprotection by urea in a terrestrially-hibernating frog. J Exp Biol 208:4079–4089

    Article  PubMed  Google Scholar 

  • Costanzo JP, Lee RE (2013) Avoidance and tolerance of freezing in ectothermic vertebrates. J Exp Biol 216:1961–1967

    Article  PubMed  Google Scholar 

  • Costanzo JP, Do Amaral MCF, Rosendale AJ, Lee RE (2013) Hibernation physiology, freezing adaptation and extreme freeze tolerance in a northern population of the wood frog. J Exp Biol 216:3461–3473

    Article  CAS  PubMed  Google Scholar 

  • Costanzo JP, Do Amaral MCF, Rosendale AJ, Lee RE (2014) Seasonality of freeze tolerance in a subarctic population of the wood frog (Rana sylvatica). Int J Zool 2014:1–13

    Article  CAS  Google Scholar 

  • Costanzo JP, Reynolds AM, do Amaral MCF, Rosendale AJ, Lee RE (2015) Cryoprotectants and extreme freeze tolerance in a subarctic population of the wood frog. PLoS One 1–23

  • Duranski MR et al (2005) Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J Clin Invest 115:1232–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erzurum SC et al (2007) Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans. PNAS 104:17593–17598

    Article  CAS  PubMed  Google Scholar 

  • Fago A, Jensen FB (2015) Hypoxia tolerance, nitric oxide, and nitrite: lessons from extreme animals. Physiology 30:116–126

    Article  CAS  PubMed  Google Scholar 

  • Filogonio R, Joyce W, Wang T (2017) Nitrergic cardiovascular regulation in the African lungfish, Protopterus aethiopicus. Comp Biochem Physiol A Mol Integr Physiol 207:52–56

    Article  CAS  PubMed  Google Scholar 

  • Forgan LG, Sofele M, McNeill BA, Cameron MS, Donald JA (2018) Vasoactivity of nitrite in the illiac artery of the toad Rhinella marina. Am J Physiol Regul Integr Comp Physiol 314:R242–R251

    Article  CAS  PubMed  Google Scholar 

  • Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33:829–837

    Article  CAS  PubMed  Google Scholar 

  • González Nicolini MV, Orezzoli AA, Villar MJ (1998) An immunohistochemical study of temperature-related changes in galanin and nitric oxide synthase immunoreactivity in the hypothalamus of the toad. Gen Comp Endocrinol 110:175–181

    Article  PubMed  Google Scholar 

  • Gould KS, Lamotte O, Klinguer A, Pugin A, Wendehenne D (2003) Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell Environ 26:1851–1862

    Article  CAS  Google Scholar 

  • Guillette LJ, Edwards TM (2005) Is nitrate an ecologically relevant endocrine disruptor in vertebrates? Integr Comp Biol 45:19–27

    Article  CAS  PubMed  Google Scholar 

  • Hansen MN, Jensen FB (2010) Nitric oxide metabolites in goldfish under normoxic and hypoxic conditions. J Exp Biol 213:3593–3602

    Article  CAS  PubMed  Google Scholar 

  • Hogg N, Kalyanaraman B (1999) Nitric oxide and lipid peroxidation. Biochim Biophys Acta 1411:378–384

    Article  CAS  PubMed  Google Scholar 

  • Holden CP, Storey KB (1997) Second messenger and cAMP-dependent protein kinase responses to dehydration and anoxia stresses in frogs. J Comp Physiol B 167:305–312

    Article  CAS  PubMed  Google Scholar 

  • Illanes MDV, Storey KB (1993) 6-Phosphofructo-2-kinase and control of cryoprotectant synthesis in freeze tolerant frogs. Biochim Biophys Acta 1158:29–32

    Article  Google Scholar 

  • Jackson DC, Ultsch GR (2010) Physiology of hibernation under the ice by turtles and frogs. J Exp Zool A Ecol Genet Physiol 313A:311–327

    Article  CAS  Google Scholar 

  • Jacobsen SB, Hansen MN, Jensen FB, Skovgaard N, Wang T, Fago A (2012) Circulating nitric oxide metabolites and cardiovascular changes in the turtle Trachemys scripta during normoxia, anoxia and reoxygenation. J Exp Biol 215:2560–2566

    Article  CAS  PubMed  Google Scholar 

  • Jensen FB (2009) The role of nitrite in nitric oxide homeostasis: a comparative perspective. Biochim Biophys Acta 1787:841–848

    Article  CAS  PubMed  Google Scholar 

  • Jensen FB, Hansen MN, Montesanti G, Wang T (2014) Nitric oxide metabolites during anoxia and reoxygenation in the anoxia-tolerant vertebrate Trachemys scripta. J Exp Biol 217:423–431

    Article  CAS  PubMed  Google Scholar 

  • Jensen FB, Gerber L, Hansen MN, Madsen SS (2015) Metabolic fates and effects of nitrite in brown trout under normoxic and hypoxic conditions: blood and tissue nitrite metabolism and interactions with branchial NOS, Na +/K + -ATPase and hsp70 expression. J Exp Biol 218:2015–2022

    Article  PubMed  Google Scholar 

  • Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588

    Article  CAS  PubMed  Google Scholar 

  • Kelm M (1999) Nitric oxide metabolism and breakdown. Biochim Biophys Acta 1411:273–289

    Article  CAS  PubMed  Google Scholar 

  • Kirton MP (1974) Fall movements and hibernation of the wood frog, Rana sylvatica, in Interior Alaska. M.S. Thesis, University of Alaska

  • Kleinbongard P et al (2003) Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Radical Biol Med 35:790–796

    Article  CAS  Google Scholar 

  • Larson DJ, Middle L, Vu H, Zhang W, Serianni AS, Duman J, Barnes BM (2014) Wood frog adaptations to overwintering in Alaska: new limits to freeze tolerance. J Exp Biol 217:2193–2200

    Article  PubMed  Google Scholar 

  • López-Barneo J, Nurse CA, Nilsson GE, Buck LT, Gassmann M, Bogdanova AY (2010) First aid kit for hypoxic survival: sensors and strategies. Physiol Biochem Zool 83:753–763

    Article  CAS  PubMed  Google Scholar 

  • Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7:156–167

    Article  CAS  PubMed  Google Scholar 

  • McNeill B, Perry SF (2006) The interactive effects of hypoxia and nitric oxide on catecholamine secretion in rainbow trout (Oncorhynchus mykiss). J Exp Biol 209:4214–4223

    Article  CAS  PubMed  Google Scholar 

  • Mornagui B, Grissa A, Duvareille M, Gharib C, Kamoun A, El-Fazaa S, Gharbi N (2006) Vasopressin and nitric oxide synthesis after three days of water or food deprivation. Acta Biol Hung 57:1–11

    Article  CAS  PubMed  Google Scholar 

  • Olson KR, Donald JA, Dombkowski RA, Perry SF (2012) Evolutionary and comparative aspects of nitric oxide, carbon monoxide and hydrogen sulfide. Respir Physiol Neurobiol 184:117–129

    Article  CAS  PubMed  Google Scholar 

  • Puyabert J, Baudouin E (2014) New clues for a cold case: nitric oxide response to low temperature. Plant Cell Environ 37:2623–2630

    Article  CAS  Google Scholar 

  • Revsbech IG et al (2014) Hydrogen sulfide and nitric oxide metabolites in the blood of free-ranging brown bears and their potential roles in hibernation. Free Radical Biol Med 73:349–357

    Article  CAS  Google Scholar 

  • Rosendale AJ, Lee RE, Costanzo JP (2014) Effect of physiological stress on expression of glucose transporter 2 in liver of the wood frog, Rana sylvatica. J Exp Zool A Ecol Genet Physiol 321A:566–576

    Article  CAS  Google Scholar 

  • Rouse JD, Bishop CA, Struger J (1999) Nitrogen pollution: an assessment of its threat to amphibian survival. Environ Health Perspect 107:799–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandvik GK, Nilsson GE, Jensen FB (2012) Dramatic increase of nitrite levels in hearts of anoxia-exposed crucian carp supporting a role in cardioprotection. Am J Physiol Regul Integr Comp Physiol 302:R468–R477

    Article  CAS  PubMed  Google Scholar 

  • Soegaard LB, Hansen MN, van Elk C, Brahm J, Jensen FB (2012) Respiratory properties of blood in the harbor porpoise, Phocoena phocoena. J Exp Biol 215:1938–1943

    Article  CAS  PubMed  Google Scholar 

  • Storey KB, Storey JM (2017) Molecular physiology of freeze tolerance in vertebrates. Physiol Rev 97:623–665

    Article  CAS  PubMed  Google Scholar 

  • Stormer J, Jensen FB, Rankin JC (1996) Uptake of nitrite, nitrate, and bromide in rainbow trout, Oncorhynchus mykiss: effects on ionic balance. Can J Fish Aquat Sci 53:1943–1950

    Article  CAS  Google Scholar 

  • Swenson KE, Eveland RL, Gladwin MT, Swenson ER (2005) Nitric Oxide (NO) in normal and hypoxic vascular regulation of the spiny dogfish, Squalus acanthias. J Exp Zool 303A:154–160

    Article  CAS  Google Scholar 

  • Umbrello M, Dyson A, Feelisch M, Singer M (2013) The key role of nitric oxide in hypoxia: hypoxic vasodilation and energy supply–demand matching. Antioxid Redox Signal:1–21 https://doi.org/10.1089/ars.2012.4979

    Article  CAS  Google Scholar 

  • Webb A, Bond R, McLean P, Uppal R, Benjamin N, Ahluwalia A (2004) Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. PNAS 101:13683–13688

    Article  CAS  PubMed  Google Scholar 

  • Welker TL, Lim C, Yildirim-Aksoy M, Shelby R, Klesius PH (2007) Immune response and resistance to stress and Edwardsiella ictaluri challenge in Channel catfish, Ictalurus punctatus, fed diets containing commercial whole-cell yeast or yeast subcomponents. J World Aquacult Soc 38:24–35

    Article  Google Scholar 

  • Wu G, Morris SM (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Hu Y, Kleindienst R, Wick G (1997) Nitric oxide induces heat-shock protein 70 expression in vascular smooth muscle cells via activation of heat shock factor 1. J Clin Invest 100:1089–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. do Amaral for aiding with the frog collection. She and K. Killian provided constructive comments on the manuscript. Supported in part by the National Science Foundation (Grant IOS1022788 to JPC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon P. Costanzo.

Additional information

Communicated by I. D. Hume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, B.L., Wiebler, J.M., Lee, R.E. et al. Nitric oxide metabolites in hypoxia, freezing, and hibernation of the wood frog, Rana sylvatica. J Comp Physiol B 188, 957–966 (2018). https://doi.org/10.1007/s00360-018-1182-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-018-1182-1

Keywords

Navigation