Skip to main content
Log in

Development of endothermy in birds: patterns and mechanisms

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Endothermy is a conspicuous and important adaptation in birds. Even though juvenile and adult birds are endothermic and maintain a constant, high body temperature by means of internal heat production, they begin life expressing an ectothermic phenotype. Depending on where a species falls along a continuum of maturity at hatching, from precocial to altricial, they begin to express endothermic traits either close to the time of hatching or as nestlings over a period of 1–3 weeks. Developing endothermy requires attaining a high basal metabolic rate and associated aerobic scope to produce sufficient internal heat, insulation to retain the internally produced heat, and a thermostat that “turns on” heat production in response to cooling ambient temperatures. To support the high metabolic costs of endothermy, the animal must have the capacity to deliver sufficient oxygen and nutrients to the heat-generating tissues. In this review, we examine the development of physiological and morphological traits that are required for endothermy and discuss their potential to limit the development of endothermy. These include ventilatory and cardiovascular function, contribution of visceral organ masses, membrane lipid composition, substrate supply pathways, and skeletal muscle physiology. The developmental trajectories of each of these systems in precocial and altricial species can have significant effects on the development of an endothermic phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

CPT:

Carnitine palmitoyl transferase

DHA:

Docosahexaenoic acid

EP:

Externally pipped

ETS:

Electron transport system

FABP:

Fatty acid binding protein

GLUT4:

Glucose transporter

IP:

Internally pipped

LPL:

Lipoprotein lipase

OXPHOS:

Oxidative phosphorylation

PMR:

Peak metabolic rate

RMR:

Resting metabolic rate

TNZ:

Thermal neutral zone

TRPM8:

Transient receptor potential cation channel subfamily M member 8

UCP:

Uncoupling protein

References

  • Abraham CL, Evans RM (1999) The development of endothermy in American white pelicans. Condor 101:832–841

    Article  Google Scholar 

  • Ar A, Sidis Y (2002) Nest microclimate during incubation. In: Deeming DC (ed) Avian Incubation: behaviour, environment, and evolution. Oxford University Press, Oxford, pp 143–160

    Google Scholar 

  • Aulie A (1977) The effect of intermittent cold exposure on the thermoregulatory capacity of Bantam chicks, Gallus domesticus. Comp Biochem Physiol: Mol Integr Physiol 56A:545–549

    Google Scholar 

  • Austin GT, Ricklefs RE (1977) Growth and development of the rufous-winged sparrow (Aimophila carpalis). Condor 79:37–50

    Article  Google Scholar 

  • Bech C, Østnes JE (1999) Influence of body composition on the metabolic rate of nestling European shags (Phalacrocorax aristotelis). J Comp Physiol B 169:263–270

    Article  Google Scholar 

  • Bennett AF, Ruben JA (1979) Endothermy and activity in vertebrates. Science 206:649–654

    Article  CAS  PubMed  Google Scholar 

  • Berman JM (2013) Characterising behavioural thermoregulation in the bearded dragon: The role of TRPM8 (MSc thesis). Brock University, St. Catherines, Ontario

  • Bícego KC, Mortola JP (2017) Thermal tachypnea in avian embryos. J Exp Biol. doi:10.1242/jeb.171702

  • Boland R, Martonosi A, Tillack TW (1974) Developmental changes in the composition and function of sarcoplasmic reticulum. J Biol Chem 249:612–623

    CAS  PubMed  Google Scholar 

  • Booth DT (1987) Metabolic response of mallee fowl Leipoa ocellata embryos to cooling and heating. Physiol Zool 60:446–453

    Article  Google Scholar 

  • Brand MD, Couture P, Else PL, Withers KW, Hulbert AJ (1991) Evolution of energy metabolism. Proton permeability of the inner membrane of liver mitochondria is greater in a mammal than in a reptile. Biochem J 275:81–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun EJ, Sweazea KL (2008) Glucose regulation in birds. Comp Biochem Physiol B: Biochem Mol Biol 151:1–9

    Article  CAS  Google Scholar 

  • Bucher TL, Bartholomew GA (1986) The early ontogeny of ventilation and hemeothermy in an altricial bird, Agapornis reseicollis (psittaciformes). Respiration physiology 65(2):197–212

    Article  CAS  PubMed  Google Scholar 

  • Choi I-H, Ricklefs RE, Shea RE (1993) Skeletal muscle growth, enzyme activities, and the development of thermogenesis: a comparison between altricial and precocial birds. Physiol Zool 66:455–473

    Article  CAS  Google Scholar 

  • Clarke A, Pörtner H-O (2010) Temperature, metabolic power and the evolution of endothermy. Biol Rev Camb Philos Soc 85:703–727

    PubMed  Google Scholar 

  • Crossley D, Altimiras J (2000) Ontogeny of cholinergic and adrenergic cardiovascular regulation in the domestic chicken (Gallus gallus). Am J Physiol Regul Integr Comp Physiol 279:R1091-R1098

    Article  Google Scholar 

  • Crossley DA, Bagatto BP, Dzialowski EM, Burggren WW (2003) Maturation of cardiovascular control mechanisms in the embryonic emu (Dromiceius novaehollandiae). J Exp Biol 206:2703–2710

    Article  PubMed  Google Scholar 

  • Dawson WR, Whittow G (1994) The emergence of endothermy in the black-footed and Laysan albatrosses. J Comp Physiol B 164(4):292–298

    Article  Google Scholar 

  • Dégletagne C, Roussel D, Rouanet JL, Baudimont F, Moureaux E-M, Harvey S, Duchamp C, Le Maho Y, Raccurt M (2013) Growth prior to thermogenesis for a quick fledging of adélie penguin chicks (Pygoscelis adeliae). PLOS One 8:e74154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dietz M, Van Kampen M (1994) The development of thermoregulation in turkey and guinea fowl hatchlings: similarities and differences. J Comp Physiol B 164(1):69–75

    Article  Google Scholar 

  • Dietz MW, Drent RH, Ricklefs RE (1995) Biphasic development of metabolic rate in young precocial birds: a possible physiological basis. In: Dietz MW (ed) Development of metabolism and thermoregulation in galliforms: effects of body mass, growth rate and functional maturity. PhD thesis, Utrecht University, pp 57–76

  • Dietz MW, van Mourik S, Tøien Ø, Koolmees PA, Tersteeg-Zijderveld MHG (1997) Participation of breast and leg muscles in shivering thermogenesis in young turkeys and guinea fowl. J Comp Physiol B 167:451–460

    Article  Google Scholar 

  • Driedzic WR, Crowe HL, Hicklin PW, Sephton DH (1993) Adaptations in pectoralis muscle, heart mass, and energy metabolism during premigratory fattening in semipalmated sandpipers (Calidris pusilla). Can J Zool/Rev Can Zool 71:1602–1608

    Article  Google Scholar 

  • Duchamp C, Barre H (1993) Skeletal muscle as the major site of nonshivering thermogenesis in cold-acclimated ducklings. Am J Physiol Regul Integr Comp Physiol 265(5):R1076-R1083

    Google Scholar 

  • Duchamp C, Rouanet J-L, Barré H (2002) Ontogeny of thermoregulatory mechanisms in king penguin chicks (Aptenodytes patagonicus). Comp Biochem Physiol A 131:765–773

    Article  Google Scholar 

  • Dumonteil E, Barré H, Meissner G (1993) Sarcoplasmic reticulum Ca2+-ATPase and ryanodine receptor in cold-acclimated ducklings and thermogenesis. Am J Physiol Cell Physiol 265:C507-C513

    Article  Google Scholar 

  • Dunn EH (1975) The timing of endothermy in the development of altrical birds. Condor 77:288–293

    Article  Google Scholar 

  • Dunn EH (1976a) Development of endothermy and existance energy expenditure of nestling double-crested cormorants. Condor 78:350–356

    Article  Google Scholar 

  • Dunn EH (1976b) The relationship between brood size and age of effective homeothermy in nestling house wrens. Wilson Bull 88:478–482

    Google Scholar 

  • Dyer MI (1968) Respiratory metabolism studies on red-winged blackbird nestlings. Can J Zool 46:223–233

    Article  Google Scholar 

  • Dzialowski EM, Burggren WW, Komoro T, Tazawa H (2007) Development of endothermic metabolic response in embryos and hatchlings of the emu (Dromaius novaehollandiae). Respir Physiol Neurobiol 155:286–292

    Article  CAS  PubMed  Google Scholar 

  • Dzialowski EM, Sirsat TS, Sirsat SKG, Price ER (2016) Breathing while altricial: the ontogeny of ventilatory chemosensitivity in red-winged blackbird (Agelaius phoeniceus) nestlings. Am J Physiol Regul Integr Comp Physiol 311:R1105-R1112

    Article  PubMed  Google Scholar 

  • Else PL, Hulbert AJ (1981) Comparison of the “mammal machine” and the “reptile machine”: energy production. Am J Physiol Regul Integr Comp Physiol 240:R3-R9

    Article  Google Scholar 

  • Else PL, Hulbert AJ (1987) Evolution of mammalian endothermic metabolism: “leaky” membranes as a source of heat. Am J Physiol Regul Integr Comp Physiol 253:R1-R7

    Article  Google Scholar 

  • Else PL, Wu BJ (1999) What role for membranes in determining the higher sodium pump molecular activity of mammals compared to ectotherms? J Comp Physiol B 169:296–302

    Article  CAS  PubMed  Google Scholar 

  • Eme J, Gwalthney J, Owerkowicz T, Blank JM, Hicks JW (2010) Turning crocodilian hearts into bird hearts: growth rates are similar for alligators with and without right-to-left cardiac shunt. J Exp Biol 213:2673–2680

    Article  PubMed  PubMed Central  Google Scholar 

  • Eppley ZA (1984) Development of thermoregulatory abilities in Xantus’ murrelet chicks Synthliboramphus hypoleucus. Physiol Zool 57:307–317

    Article  Google Scholar 

  • Eppley ZA, Russell B (1995) Perinatal changes in avian muscle: implications from ultrastructure for the development of endothermy. J Morphol 225:357–367

    Article  CAS  PubMed  Google Scholar 

  • Farkas K, Ratchford IAJ, Noble RC, Speake BK (1996) Changes in size and docosahexaenoic acid content of adipocytes during chick embryo development. Lipids 31:313–321

    Article  CAS  PubMed  Google Scholar 

  • Fongy A, Romestaing C, Blanc C, Lacoste-Garanger N, Rouanet J-L, Raccurt M, Duchamp C (2013) Ontogeny of muscle bioenergetics in Adélie penguin chicks (Pygoscelis adeliae). Am J Physiol Regul Integr Comp Physiol 305:R1065-1075

    Article  CAS  Google Scholar 

  • Freeman BM (1966) The effects of cold, noradrenaline and adrenaline upon the oxygen consumption and carbohydrate metabolism of the young fowl (Gallus domesticus). Comp Biochem Physiol A 18:369–382

    Article  CAS  Google Scholar 

  • Freeman BM (1967) Some effects of cold on the metabolism of the fowl during the perinatal period. Comp Biochem Physiol 20:179–193

    Article  CAS  Google Scholar 

  • Freeman BM, Vince MA (1974) Development of the Avian Embryo. Chapman and Hall, London

    Book  Google Scholar 

  • Fukuoka S, Khandoker AH, Dzialowski EM, Burggren WW, Tazawa H (2006) Development of endothermic heart rate response in emu (Dromaius novaehollandiae) embryos. In: Yahav S, Tzschentke B (eds) New insights into fundemental physiology and peri-natal adaptation of domestic fowl. Nottingham University Press, Nottingham, pp 29–42

    Google Scholar 

  • Goodridge AG (1968) Lipolysis in vitro in adipose tissue from embryonic and growing chicks. Am J Physiol 214:902–907

    CAS  PubMed  Google Scholar 

  • Grav HJ, Borch-Iohnsen B, Dahl HA, Gabrielsen GW, Steen JB (1988) Oxidative capacity of tissues contributing to thermogenesis in eider (Somateria mollissima) ducklings: changes associated with hatching. J Comp Physiol B 158:513–518

    Article  CAS  PubMed  Google Scholar 

  • Grubb BR (1983) Allometric relations of cardiovascular function in birds. Am J Physiol Heart Circ Physiol 245:H567-572

    Article  Google Scholar 

  • Guglielmo CG, Haunerland NH, Hochachka PW, Williams TD (2002) Seasonal dynamics of flight muscle fatty acid binding protein and catabolic enzymes in a migratory shorebird. Am J Physiol Regul Integr Comp Physiol 282:R1405-R1413

    Article  Google Scholar 

  • Hill RW, Beaver DL (1982) Inertial thermostability and thermoregulation in broods of redwing blackbirds. Physiol Zool 55:250–266

    Article  Google Scholar 

  • Hillman SS, Hedrick MS (2015) A meta-analysis of in vivo vertebrate cardiac performance: implications for cardiovascular support in the evolution of endothermy. J Exp Biol 218:1143–1150

    Article  PubMed  Google Scholar 

  • Hillman SS, Hancock TV, Hedrick MS (2013) A comparative meta-analysis of maximal aerobic metabolism of vertebrates: implications for respiratory and cardiovascular limits to gas exchange. J Comp Physiol B 183:167–179

    Article  CAS  PubMed  Google Scholar 

  • Hissa R, Saarela S, Rintamäki H, Lindén H, Hohtola E (1983) Energetics and development of temperature regulation in Capercaillie Tetrao urogallus. Physiol Zool 56:142–151

    Article  Google Scholar 

  • Hohtola E (2004) Shivering thermogenesis in birds and mammals. In: Barnes BM, Carey HV (eds) Life in the cold: evoluion, mechanisms, adaptation, and application. Twelfth International Hibernation Symposium. Biological Papers of the University of Alaska, number 27. Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, pp 241–252

    Google Scholar 

  • Hohtola E, Visser GH (1998) Development of locomotion and endothermy in altricial and precocial birds. In: Starck JM, Ricklefs RE (eds) Avian Growth and Development. Oxford University Press, New York, pp 157–173

    Google Scholar 

  • Hoppeler H, Weibel E (2000) Structural and functional limits for oxygen supply to muscle. Acta Physiol Scand 168(4):445–456

    Article  CAS  PubMed  Google Scholar 

  • Hulbert AJ, Else PL (1999) Membranes as possible pacemakers of metabolism. J Theor Biol 199:257–274

    Article  CAS  PubMed  Google Scholar 

  • Hulbert AJ, Else PL (2005) Membranes and the setting of energy demand. J Exp Biol 208:1593–1599

    Article  CAS  PubMed  Google Scholar 

  • Hulbert AJ, Faulks S, Buttemer WA, Else PL (2002a) Acyl composition of muscle membranes varies with body size in birds. J Exp Biol 205:351–3569

    Google Scholar 

  • Hulbert AJ, Rana T, Couture P (2002b) The acyl composition of mammalian phospholipids: an allometric analysis. Comp Biochem Physiol B: Biochem Mol Biol 132:515–527

    Article  CAS  Google Scholar 

  • Ide ST, Ide R, Mortola JP (2017) The contribution of heart rate to the oxygen consumption of the chicken embryo during cold- or hypoxia-hypometabolism. Comp Biochem Physiol A: Mol Integr Physiol 203:49–58

    Article  CAS  Google Scholar 

  • Khandoker AH, Fukazawa K, Dzialowski EM, Burggren WW, Tazawa H (2004) Maturation of the homeothermic response of heart rate to altered ambient temperature in developing chick hatchlings (Gallus gallus domesticus). Am J Physiol Regul Integr Comp Physiol 286:R129-R137

    Article  Google Scholar 

  • Konarzewski M, Lilja C, Kozlowski J, Lewończuk (1990) On the optimal growth of the alimentary tract in avian postembryonic development. J Zool 222:89–101

    Article  Google Scholar 

  • Langslow DR (1972) The development of lipolytic sensitivity in the isolated fat cells of Gallus domesticus during the foetal and neonatal period. Comp Biochem Physiol B: Biochem Mol Biol 43B:689–701

    Article  Google Scholar 

  • Le Peuch CJ, Ferraz C, Walsh MP, Demaille JG, Fischer EH (1979) Calcium and cyclic nucleotide dependent regulatory mechanisms during development of chick embryo skeletal muscle. Biochemistry 18:5267–5273

    Article  PubMed  Google Scholar 

  • Liknes ET, Guglielmo CG, Swanson DL (2014) Phenotypic flexibility in passerine birds: seasonal variation in fuel storage, mobilization and transport. Comp Biochem Physiol A: Mol Integr Physiol 174:1–10

    Article  CAS  Google Scholar 

  • Lilja C (1983) A comparative study of postnatal growth and organ development in some species of birds. Growth 47:317–339

    CAS  PubMed  Google Scholar 

  • Lilja C (1997a) On the pattern of organ growth in the common tern (Sterna hirundo). Growth Dev Aging 61:11–18

    CAS  PubMed  Google Scholar 

  • Lilja C (1997b) Oxygen consumption and vital organ masses in youn growing quail (Coturnix coturnix japonica). Acta Physiol Scand 160:113–114

    Article  CAS  PubMed  Google Scholar 

  • Marjoniemi K, Hohtola E (1999) Shivering thermogenesis in leg and breast muscles of galliform chicks and nestlings of the domestic pigeon. Physiol Biochem Zool 72:484–492

    Article  CAS  PubMed  Google Scholar 

  • Marsh RL (1979) Development of endothermy in nestling bank swallows (Riparia riparia). Physiol Zool 52:340–353

    Article  Google Scholar 

  • Marsh RL, Wickler SJ (1982) The role of muscle development in the transition to endothermy in nestling bank swallows, Riparia riparia. J Comp Physiol B 149:99–105

    Article  CAS  Google Scholar 

  • McFarlan JT, Bonen A, Guglielmo CG (2009) Seasonal upregulation of fatty acid transporters in flight muscles of migratory white-throated sparrows (Zonotrichia albicollis). J Exp Biol 212:2934–2940

    Article  CAS  PubMed  Google Scholar 

  • McKechnie AE, Whitfield MC, Smit B, Gerson AR, Smith EK, Talbot WA, McWhorter TJ, Wolf BO (2016) Avian thermoregulation in the heat: efficient evaporative cooling allows for extreme heat tolerance in four southern hemisphere columbids. J Exp Biol 219(14):2145–2155

    Article  PubMed  Google Scholar 

  • Menna TM, Mortola JP (2003) Ventilatory chemosensitivity in the chick embryo. Respir Physiol Neurobiol 137:69–79

    Article  PubMed  Google Scholar 

  • Mills SH, Heath JE (1972) Responses to thermal stimulation of the preoptic area in the house sparrow, Passer domesticus. Am J Physiol 222:914–919

    CAS  PubMed  Google Scholar 

  • Moe B, Stølevik E, Bech C (2005) Ducklings exhibit substantial energy-saving mechanisms as a response to short-term food storage. Physiol Biochem Zool 78:90–104

    Article  PubMed  Google Scholar 

  • Morrison SF (2011) 2010 Carl Ludwig distinguished lectureship of the APS neural control and autonomic regulation section: central neural pathways for thermoregulatory cold defense. J Appl Physiol 110:1137–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortola JP (2009) Gas exchange in avian embryos and hatchlings. Comp Biochem Physiol A 153:359–377

    Article  CAS  Google Scholar 

  • Mortola JP, Toro-Velasquez PA (2014) Breathing pattern and ventilatory chemosensitivity of the 1-day old Muscovy duck (Cairina moschata) in relation to its metabolic demands. Comp Biochem Physiol A 167:35–39

    Article  CAS  Google Scholar 

  • Morton ML, Carey C (1971) Growth and the development of endothermy in the mountain white-crowned sparrow (Zonotrichia leucophrys oriantha). Physiol Zool 44:177–189

    Article  Google Scholar 

  • Nakamura K (2011) Central circuitries for body temperature regulation and fever. Am J Physiol Regul Integr Comp Physiol 301:R1207-1228

    Article  CAS  Google Scholar 

  • Newman SA, Mezentseva NV, Badyaev AV (2013) Gene loss, thermogenesis, and the origin of birds. Ann N Y Acad Sci 1289:36–47

    Article  CAS  PubMed  Google Scholar 

  • Nickerson JG, Alkhateeb H, Benton CR, Lally J, Nickerson J, Han X-X, Wilson MH, Jain SS, Snook LA, Glatz JFC, Chabowski A, Luiken JJFP, Bonen A (2009) Greater transport efficiencies of the membrane fatty acid transporters FAT/CD36 and FATP4 compared with FABPpm and FATP1 and differential effects on fatty acid esterification and oxidation in rat skeletal muscle. J Biol Chem 284:16522–16530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira JE, Druyan S, Uni Z, Ashwell CM, Ferket PR (2013) Metabolic profiling of late-term turkey embryos by microarrays. Poult Sci 92:1011–1028

    Article  PubMed  CAS  Google Scholar 

  • Olson JM (1992) Growth, the development of endothermy, and the allocation of energy in red-winged blackbirds (Agelaius phoeniceus) during the nestling period. Physiol Zool 65:124–152

    Article  Google Scholar 

  • Olson JM (1994) The ontogeny of shivering thermogenesis in the red-winged blackbird (Agelaius phoeniceus). J Exp Biol 191:59–88

    CAS  PubMed  Google Scholar 

  • Olson JM (2001) Ontogeny of catabolic and morphological properties of skeletal muscle of the red-winged blackbird (Agelaius phoeniceus). J Comp Physiol B 171:527–542

    Article  CAS  PubMed  Google Scholar 

  • Østnes JE, Jenssen BM, Bech C (2001) Growth and development of homeothermy in nestling European shags (Phalacrocorax aristotelis). Auk 118:983–995

    Article  Google Scholar 

  • Palokangas R, Vihko V, Nuuja I (1973) The effects of cold and glucagon on lipolysis, glycogenolysis and oxygen consumption in young chicks. Comp Biochem Physiol A: Mol Integr Physiol 45A:489–495

    Article  Google Scholar 

  • Pearson JT (1998) Development of thermoregulation and posthatching growth in the altricial cockatiel Nymphicus hollandicus. Physiol Zool 71(2):237–244

    Article  CAS  PubMed  Google Scholar 

  • Pereyra ME, Morton ML (2001) Nestling growth and thermoregulatory development in subalpine dusky flycatchers. Auk 118:116–136

    Article  Google Scholar 

  • Richter EA, Hargreaves M (2013) Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev 93:993–1017

    Article  CAS  PubMed  Google Scholar 

  • Ricklefs RE (1967) Relative growth, body constituents, and energy content of nestling barn swallows and red-winged blackbirds. Auk 84:560–570

    Article  Google Scholar 

  • Ricklefs RE (1975) Patterns of growth in birds. III. Growth and development of the cactus wren. Condor 77:34–45

    Article  Google Scholar 

  • Ricklefs RE, Hainsworth FR (1968) Temperature regulation in nestling cactus wrens: the development of homeothermy. Condor 70:121–127

    Article  Google Scholar 

  • Ricklefs RE, Webb T (1985) Water content, thermogenesis, and growth rate of skeletal muscles in the European starling. Auk 102:369–376

    Article  Google Scholar 

  • Rowland LA, Bal NC, Periasamy M (2015) The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy. Biol Rev 90:1279–1297

    Article  PubMed  Google Scholar 

  • Schmidt-Nielsen K (1997) Animal Physiology: Adaptation and the environment, Fifth Edition. Cambridge University Press, Cambridge

    Google Scholar 

  • Scott GR (2011) Elevated performance: the unique physiology of birds that fly at high altitude. J Exp Biol 214:2455–2462

    Article  CAS  PubMed  Google Scholar 

  • Seebacher F (2009) Responses to temperture variation: integration of thermoregulation and metabolism in vertebrates. J Exp Biol 212:2885–2891

    Article  PubMed  Google Scholar 

  • Seebacher F, Schwartz TS, Thompson MB (2006) Transition from ectothermy to endothermy: the development of metabolic capacity in a bird (Gallus gallus). Proc R Soc Lond Ser B: Biol Sci 273:565–570

    Article  Google Scholar 

  • Seki Y, Sato K, Akiba Y (2005) Changes in muscle mRNAs for hexokinase, phosphofructokinase-1 and glycogen synthase in acute and persistent hypoglycemia induced by tolbutamide in chickens. Comp Biochem Physiol B: Biochem Mol Biol 142:201–208

    Article  CAS  Google Scholar 

  • Seymour RS, Runciman S, Baudinette RV, Pearson JT (2004) Developmental allometry of pulmonary structure and function in the altricial Australian pelican Pelecanus conspicillatus. J Exp Biol 207:2663–2669

    Article  PubMed  Google Scholar 

  • Shell L, Burggren WW, Muirhead D, Nelson TC, Dzialowski EM (2016) Circulatory changes associated with the closure of the ductus arteriosus in hatching emu (Dromaius novaehollandiae). Comp Biochem Physiol A 191:202–208

    Article  CAS  Google Scholar 

  • Shilov IA (1973) Heat regulation in birds (an ecological-physiological outline). Amerind Publishing Co. Pvt. Ltd., New Delhi

    Google Scholar 

  • Sirsat SKG (2016) Maturation of endothermic capacity within the avian developmental spectrum: a characterization of thermoregulatory metamorphosis (PhD Dissertation). University of North Texas, Denton TX

  • Sirsat TS, Dzialowski EM (2016) Ventilation changes associated with hatching and maturation of an endothermic phenotype in the Pekin duck, Anas platyrhynchos domestica. Am J Physiol Regul Integr Comp Physiol 310:R766-R775

    Article  PubMed Central  Google Scholar 

  • Sirsat SKG, Sirsat TS, Crossley JL, Sotherland PR, Dzialowski EM (2016a) The 12-day thermoregulatory metamorphosis of Red-winged Blackbirds (Agelaius phoeniceus). J Comp Physiol B 186:651–663

    Article  PubMed  CAS  Google Scholar 

  • Sirsat SKG, Sirsat TS, Faber A, Duquaine A, Winnick S, Sotherland PR, Dzialowski EM (2016b) Development of endothermy and concomitant increases in cardiac and skeletal muscle mitochondrial respiration in the precocial Pekin duck (Anas platyrhynchos domestica). J Exp Biol 219:1214–1223

    Article  PubMed  Google Scholar 

  • Sirsat SKG, Sirsat TS, Price ER, Dzialowski EM (2016c) Post-hatching development of mitochondrial function, organ mass and metabolic rate in two ectotherms, the American alligator (Alligator mississippiensis) and the common snapping turtle (Chelydra serpentina). Biol Open 5:443–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith EK, O’Neill JJ, Gerson AR, McKechnie AE, Wolf BO (2017) Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert songbirds. J Exp Biol 220:3290–3300

    Article  PubMed  Google Scholar 

  • Sogge MK, Kern MD, Kern R, van Riper III C (1991) Growth and development of thermoregulation in nestling San Miguel Island song sparrows. Condor 93:773–776

    Article  Google Scholar 

  • Speake BK, Wood NAR (2005) Timing of incorporation of docosahexaenoic acid into brain and muscle phospholipids during precocial and altricial modes of avian development. Comp Biochem Physiol B: Biochem Mol Biol 141:147–158

    Article  CAS  Google Scholar 

  • Speake BK, Cerolini S, Maldjian A, Noble RC (1997) The preferential mobilisation of C20 and C22 polyunsaturated fatty acids from the adipose tissue of the chick embryo: potential implications regarding the provision of essential fatty acids for neural development. Biochim Biophys Acta 1345:317–326

    Article  CAS  PubMed  Google Scholar 

  • Speake BK, Murray AMB, Noble RC (1998) Transport and transformations of yolk lipids during development of the avian embryo. Prog Lipid Res 37:1–32

    Article  CAS  PubMed  Google Scholar 

  • Starck JM, Ricklefs RE (1998) Patterns of development: The altricial-precocial spectrum. In: Starck JM, Ricklefs RE (eds) Avian growth and development: Evolution within the altricial-precocial spectrum. Oxford University Press, Oxford, pp 3–30

    Google Scholar 

  • Steen JB, Gabrielsen GW (1988) The development of homeothermy in common eider ducklings (Somateria mollissima). Acta Physiol Scand 132:557–561

    Article  CAS  PubMed  Google Scholar 

  • Sutter GC, Macarthur RA (1992) Development of thermoregulation in a precocial aquatic bird, the American coot (Fulica americana). Comp Biochem Physiol A 101(3):533–543

    Article  Google Scholar 

  • Swanson DL, Thomas NE, Liknes ET, Cooper SJ (2012) Intraspecific correlations of basal and maximal metabolic rates in birds and the aerobic capacity model for the evolution of endothermy. PLOS One 7:e34271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweazea KL, Braun EJ (2005) Glucose transport by English sparrow (Passer domesticus) skeletal muscle: have we been chirping up the wrong tree? J Exp Zool 303A:143–153

    Article  CAS  Google Scholar 

  • Szabó A, Fébel H, Horn P, Bázár G, Romvári R (2006) Ontogenic development of the fatty acyl chain composition of the turkey (Meleagris gallopavo) pectoralis superficialis muscle membranes (an allometric approach). Acta Biol Hung 57:165–180

    PubMed  Google Scholar 

  • Szdzuy K, Mortola JP (2007) Monitoring breathing in avian embryos and hatchlings by the barometric technique. Respir Physiol Neurobiol 159:241–244

    Article  PubMed  Google Scholar 

  • Szdzuy K, Fong LM, Mortola JP (2008) Oxygenation and establishment of thermogenesis in the avian embryo. Life Sci 82:50–58

    Article  CAS  PubMed  Google Scholar 

  • Tazawa H (2005) Cardiac rhythms in avian embryos and hatchlings. Avian Poult Biol Rev 16:123–150

    Article  Google Scholar 

  • Tazawa H, Okuda A, Nakazawa S, Whittow G (1989) Metabolic responses of chicken embryos to graded, prolonged alterations in ambient temperature. Comp Biochem Physiol A 92:613–617

    Article  CAS  PubMed  Google Scholar 

  • Teulier L, Rouanet J-L, Rey B, Roussel D (2014) Ontogeny of non-shivering thermogenesis in Muscovy ducklings (Cairina moschata). Comp Biochem Physiol: Mol Integr Physiol 175:82–89

    Article  CAS  Google Scholar 

  • Thil M-A, Speake BK, Groscolas R (2003) Changes in tissue fatty acid composition during the first month of growth of the king penguin chick. J Comp Physiol B 173:190–206

    Google Scholar 

  • Trayer IP, Perry SV (1966) The myosin of developing skeletal muscle. Biochemische Zeitschrift 345:87–100

    CAS  Google Scholar 

  • Tzschentke B, Basta D (2000) Development of hypothalamic neuronal thermosensitivity in birds during the perinatal period. J Therm Biol 25:119–123

    Article  Google Scholar 

  • Tzschentke B, Basta D (2002) Early development of neuronal hypothalamic thermosensitivity in birds: influence of epigenetic temperature adaptation. Comp Biochem Physiol A 131:825–832

    Article  Google Scholar 

  • Vézina F, Love OP, Lessard M, Williams TD (2009) Shifts in metabolic demands in growing altricial nestlings illustrate context-specific relationships between basal metabolic rate and body composition. Physiol Biochem Zool 82:248–257

    Article  PubMed  Google Scholar 

  • Visser GH (1998) Development of temperature regulation. In: Starck JM, Ricklefs RE (eds) Avian Growth and Development. Oxford University Press, New York, pp 117–156

    Google Scholar 

  • Visser GH, Ricklefs RE (1995) Relationship between body composition and homeothermy in neonates of precocial and semiprecocial birds. Auk 112:192–200

    Article  Google Scholar 

  • Walter I, Seebacher F (2009) Endothermy in birds: underlying molecular mechanisms. J Exp Biol 212:2328–2336

    Article  CAS  PubMed  Google Scholar 

  • Welch KC Jr, Allalou A, Sehgal P, Cheng J, Ashok A (2013) Glucose transporter expression in an avian nectarivore: the ruby-throated hummingbird (Archilochus colubris). PLOS One 8:e77003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittow GC, Tazawa H (1991) The early development of thermoregulation in birds. Physiol Zool 64:1371–1390

    Article  Google Scholar 

  • Wone BWM, Donovan ER, Cushman JC, Hayes JP (2013) Metabolic rates associated with membrane fatty acids in mice selected for increased maximal metabolic rate. Comp Biochem Physiol A 165:70–78

    Article  CAS  Google Scholar 

  • Wu BJ, Hulbert AJ, Storlien LH, Else PL (2004) Membrane lipids and sodium pumps of cattle and crocodiles: an experimental test of the membrane pacemaker theory of metabolism. Am J Physiol Regul Integr Comp Physiol 287:R633-R641

    Article  Google Scholar 

  • Yarbrough CG (1970) The development of endothermy in nestlin gray-crowned rosy finches, Leucosticte tephrocotis griseonucha. Comp Biochem Physiol 34:917–925

    Article  Google Scholar 

  • Yoneta H, Dzialowski EM, Burggren WW, Tazawa H (2007) Endothermic heart rate response in broiler an White Leghorn chicks (Gallus gallus domesticus) during the first two days of post-hatch life. Comp Biochem Physiol: Mol Integr Physiol 147:529–535

    Article  CAS  Google Scholar 

  • Zajac DM, Cerasale DJ, Landman S, Guglielmo CG (2011) Behavioral and physiological effects of photoperiod-induced migratory state and leptin on Zonotrichia albicollis: II. Effects on fatty acid metabolism. Gen Comp Endocrinol 174:269–275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sarah Sirsat, Tushar Sirsat, Paul Sotherland, and Chris Mallery for discussion of the topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward M. Dzialowski.

Ethics declarations

Funding

This review was funded in part by National Science Foundation (IOS1146758).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by I. D. Hume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Price, E.R., Dzialowski, E.M. Development of endothermy in birds: patterns and mechanisms. J Comp Physiol B 188, 373–391 (2018). https://doi.org/10.1007/s00360-017-1135-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-017-1135-0

Keywords