Skip to main content
Log in

Di- and tripeptide transport in vertebrates: the contribution of teleost fish models

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Solute Carrier 15 (SLC15) family, alias H+-coupled oligopeptide cotransporter family, is a group of membrane transporters known for their role in the cellular uptake of di- and tripeptides (di/tripeptides) and peptide-like molecules. Of its members, SLC15A1 (PEPT1) chiefly mediates intestinal absorption of luminal di/tripeptides from dietary protein digestion, while SLC15A2 (PEPT2) mainly allows renal tubular reabsorption of di/tripeptides from ultrafiltration, SLC15A3 (PHT2) and SLC15A4 (PHT1) possibly interact with di/tripeptides and histidine in certain immune cells, and SLC15A5 has unknown function. Our understanding of this family in vertebrates has steadily increased, also due to the surge of genomic-to-functional information from ‘non-conventional’ animal models, livestock, poultry, and aquaculture fish species. Here, we review the literature on the SLC15 transporters in teleost fish with emphasis on SLC15A1 (PEPT1), one of the solute carriers better studied amongst teleost fish because of its relevance in animal nutrition. We report on the operativity of the transporter, the molecular diversity, and multiplicity of structural–functional solutions of the teleost fish orthologs with respect to higher vertebrates, its relevance at the intersection of the alimentary and osmoregulative functions of the gut, its response under various physiological states and dietary solicitations, and its possible involvement in examples of total body plasticity, such as growth and compensatory growth. By a comparative approach, we also review the few studies in teleost fish on SLC15A2 (PEPT2), SLC15A4 (PHT1), and SLC15A3 (PHT2). By representing the contribution of teleost fish to the knowledge of the physiology of di/tripeptide transport and transporters, we aim to fill the gap between higher and lower vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adair LS, Fall CH, Osmond C, Stein AD, Martorell R, Ramirez-Zea M, Sachdev HS, Dahly DL, Bas I, Norris SA, Micklesfield L, Hallal P, Victora CG, COHORTS group, (2013) Associations of linear growth and relative weight gain during early life with adult health and human capital in countries of low and middle income: findings from five birth cohort studies. Lancet 382:525–534. doi:10.1016/S0140-6736(13)60103-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Adibi SA (2003) Regulation of expression of the intestinal oligopeptide transporter (Pept-1) in health and disease. Am J Physiol Gastrointest Liver Physiol 285:G779–G788. doi:10.1152/ajpgi.00056.2003

    Article  CAS  PubMed  Google Scholar 

  • Adibi SF, Khan MA (2011) Total sulphur amino acid requirement and cystine replacement value for fingerling rohu, Labeo rohita: effects on growth, nutrient retention and body composition. Aquacult Nutr 17:E583–E594. doi:10.1111/j.1365-2095.2010.00799.x

    Article  Google Scholar 

  • Adibi SA, Mercer DW (1973) Protein digestion in human intestine as reflected in luminal, mucosal, and plasma amino acid concentrations after meals. J Clin Invest 52:1586–1594. doi:10.1172/JCI107335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agu R, Cowley E, Shao D, Macdonald C, Kirkpatrick D, Renton K, Massoud E (2011) Proton-coupled oligopeptide transporter (POT) family expression in human nasal epithelium and their drug transport potential. Mol Pharm 8:664–672. doi:10.1021/mp100234z

    Article  CAS  PubMed  Google Scholar 

  • Ahmed I, Khan MA, Jafri AK (2003) Dietary methionine requirement of fingerling Indian major carp, Cirrhinus mrigala (Hamilton). Aquacult Int 11:449–462. doi:10.1023/B:AQUI.0000004181.89420.a2

    Article  CAS  Google Scholar 

  • Ahn H, Yamada Y, Okamura A, Tsukamoto K, Kaneko T, Watanabe S (2013) Intestinal expression of peptide transporter 1 (PEPT1) at different life stages of Japanese eel, Anguilla japonica. Comp Biochem Physiol B: Biochem Mol Biol 166:157–164. doi:10.1016/j.cbpb.2013.08.005

    Article  CAS  Google Scholar 

  • Ahring BK, Ibrahim AA, Mladenovska Z (2001) Effect of temperature increase from 55 to 65 °C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Res 35:2446–2452. doi:10.1016/S0043-1354(00)00526-1

    Article  CAS  PubMed  Google Scholar 

  • Ai Q, Xie X (2005) Effects of replacement of fish meal by soybean meal and supplementation of methionine in fish meal/soybean meal-based diets on growth performance of the southern catfish Silurus meridionalis. J World Aquacult Soc 36:498–507. doi:10.1111/j.1749-7345.2005.tb00397.x

    Article  Google Scholar 

  • Ait-Omar A, Monteiro-Sepulveda M, Poitou C, Le Gall M, Cotillard A, Gilet J, Garbin K, Houllier A, Château D, Lacombe A, Veyrie N, Hugol D, Tordjman J, Magnan C, Serradas P, Clément K, Leturque A, Brot-Laroche E (2011) GLUT2 accumulation in enterocyte apical and intracellular membranes: a study in morbidly obese human subjects and ob/ob and high fat-fed mice. Diabetes 60:2598–2607. doi:10.2337/db10-1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aksnes A, Hope B, Høstmark Ø, Albrektsen S (2006a) Inclusion of size fractionated fish hydrolysate in high plant protein diets for Atlantic cod, Gadus morhua. Aquaculture 261:1102–1110. doi:10.1016/j.aquaculture.2006.07.038

    Article  CAS  Google Scholar 

  • Aksnes A, Hope B, Jönsson E, Björnsson Albrektsen S (2006b) Size-fractionated fish hydrolysate as feed ingredient for rainbow trout (Oncorhynchus mykiss) fed high plant protein diets: I: Growth, growth regulation and feed utilization. Aquaculture 261:305–317. doi:10.1016/j.aquaculture.2006.07.025

    Article  CAS  Google Scholar 

  • Alam MS, Teshima SI, Ishikawa M, Koshio S (2000) Methionine requirement of juvenile Japanese flounder Paralichthys olivaceus. J World Aquacult Soc 31:618–626. doi:10.1111/j.1749-7345.2000.tb00911.x

    Article  Google Scholar 

  • Ali M, Nicieza A, Wootton RJ (2003) Compensatory growth in fishes: a response to growth depression. Fish Fish 4:147–190. doi:10.1046/j.1467-2979.2003.00120.x

    Article  Google Scholar 

  • Amasheh S, Wenzel U, Boll M, Dorn D, Weber WM, Clauss W, Daniel H (1997) Transport of charged dipeptides by the intestinal H+/peptide symporter PepT1 expressed in Xenopus laevis oocytes. J Membr Biol 155:247–256. doi:10.1007/s002329900177

    Article  CAS  PubMed  Google Scholar 

  • Amberg JJ, Myr C, Kamisaka Y, Jordal AE, Rust MB, Hardy RW, Koedijk R, Rønnestad I (2008) Expression of the oligopeptide transporter, PepT1, in larval Atlantic cod (Gadus morhua). Comp Biochem Physiol B: Biochem Mol Biol 150:177–182. doi:10.1016/j.cbpb.2008.02.011

    Article  CAS  Google Scholar 

  • Anderle P, Nielsen CU, Pinsonneault J, Krog PL, Brodin B, Sadée W (2006) Genetic variants of the human dipeptide transporter PEPT1. J Pharmacol Exp Ther 316:636–646. doi:10.1124/jpet.105.094615

    Article  CAS  PubMed  Google Scholar 

  • Aragão C, Conceição LEC, Martins D, Rønnestad I, Gomes E, Dinis MT (2004) A balanced dietary amino acid profile improves amino acid retention in post-larval Senegalese sole (Solea senegalensis). Aquaculture 233:293–304. doi:10.1016/j.aquaculture.2003.08.007

    Article  CAS  Google Scholar 

  • Araújo de França GV, De Lucia Rolfe E, Horta BL, Gigante DP, Yudkin JS, Ong KK, Victora CG (2016) Associations of birth weight, linear growth and relative weight gain throughout life with abdominal fat depots in adulthood: the 1982 Pelotas (Brazil) birth cohort study. Int J Obes (Lond) 40:14–21. doi:10.1038/ijo.2015.192

    Article  Google Scholar 

  • Bacconi A, Ravera S, Virkki LV, Murer H, Forster IC (2007) Temperature dependence of steady-state and presteady-state kinetics of a type Iib Na+/Pi cotransporter. J Membr Biol 215:81–92. doi:10.1007/s00232-007-9008-1

    Article  CAS  PubMed  Google Scholar 

  • Bakke S, Jordal AE, Gómez-Requeni P, Verri T, Kousoulaki K, Aksnes A, Rønnestad I (2010) Dietary protein hydrolysates and free amino acids affect the spatial expression of peptide transporter PepT1 in the digestive tract of Atlantic cod (Gadus morhua). Comp Biochem Physiol B: Biochem Mol Biol 156:48–55. doi:10.1016/j.cbpb.2010.02.002

    Article  CAS  Google Scholar 

  • Ball RO, Urschel KL, Pencharz PB (2007) Nutritional consequences of interspecies differences in arginine and lysine metabolism. J Nutr 137:1626S–1641S

    CAS  PubMed  Google Scholar 

  • Bar N (2014) Physiological and hormonal changes during prolonged starvation in fish. Can J Fish Aquat Sci 71:1447–1458. doi:10.1139/cjfas-2013-0175

    Article  CAS  Google Scholar 

  • Barboza PS, Hume ID (2006) Physiology of intermittent feeding: integrating responses of vertebrates to nutritional deficit and excess. Physiol Biochem Zool 79:250–264. doi:10.1086/499984

    Article  PubMed  Google Scholar 

  • Barca A (2007) Caratterizzazione dei geni SLC15 della serie PHT: splicing alternativo e ruolo del Nonsense-Mediated mRNA Decay (NMD). Dissertation, University of Salento

  • Battley PF, Piersma T, Dietz MW, Tang S, Dekinga A, Hulsman K (2000) Empirical evidence for differential organ reductions during trans-oceanic bird flight. Proc Biol Sci 267:191–195. doi:10.1098/rspb.2000.0986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauchinger U, Wohlmann A, Biebach H (2005) Flexible remodeling of organ size during spring migration of the garden warbler (Sylvia borin). Zool (Jena) 108:97–106. doi:10.1016/j.zool.2005.03.003

    Article  Google Scholar 

  • Beale JH, Parker JL, Samsudin F, Barrett AL, Senan A, Bird LE, Scott D, Owens RJ, Sansom MS, Tucker SJ, Meredith D, Fowler PW, Newstead S (2015) Crystal structures of the extracellular domain from PepT1 and PepT2 provide novel insights into mammalian peptide transport. Structure 23:1889–1899. doi:10.1016/j.str.2015.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckman ML, Quick MW (2001) Substrates and temperature differentiate ion flux from serotonin flux in a serotonin transporter. Neuropharmacology 40:526–535. doi:10.1016/S0028-3908(00)00191-X

    Article  CAS  PubMed  Google Scholar 

  • Beers JM, Jayasundara N (2015) Antarctic notothenioid fish: what are the future consequences of ‘losses’ and ‘gains’ acquired during long-term evolution at cold and stable temperatures? J Exp Biol 218:1834–1845. doi:10.1242/jeb.116129

    Article  PubMed  Google Scholar 

  • Benner J, Daniel H, Spanier B (2011) A glutathione peroxidase, intracellular peptidases and the TOR complexes regulate peptide transporter PEPT-1 in C. elegans. PLoS One 6:e25624. doi:10.1371/journal.pone.0025624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benstead JP, Hood JM, Whelan NV, Kendrick MR, Nelson D, Hanninen AF, Demi LM (2014) Coupling of dietary phosphorus and growth across diverse fish taxa: a meta-analysis of experimental aquaculture studies. Ecology 95:2768–2777. doi:10.1890/13-1859.1

    Article  Google Scholar 

  • Berthelsen R, Nielsen CU, Brodin B (2013) Basolateral glycylsarcosine (Gly–Sar) transport in Caco-2 cell monolayers is pH dependent. J Pharm Pharmacol 65:970–979. doi:10.1111/jphp.12061

    Article  CAS  PubMed  Google Scholar 

  • Betancur-R R, Broughton RE, Wiley EO, Carpenter K, López JA, Li C, Holcroft NI, Arcila D, Sanciangco M, Cureton Ii JC, Zhang F, Buser T, Campbell MA, Ballesteros JA, Roa-Varon A, Willis S, Borden WC, Rowley T, Reneau PC, Hough DJ, Lu G, Grande T, Arratia G, Ortí G (2013) The tree of life and a new classification of bony fishes. PLoS Curr 5. doi:10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288

  • Bhardwaj RK, Herrera-Ruiz D, Eltoukhy N, Saad M, Knipp GT (2006) The functional evaluation of human peptide/histidine transporter 1 (hPHT1) in transiently transfected COS-7 cells. Eur J Pharm Sci 27:533–542. doi:10.1016/j.ejps.2005.09.014

    Article  CAS  PubMed  Google Scholar 

  • Biagi G, Piva A, Moschini M, Vezzali E, Roth FX (2007) Performance, intestinal microflora, and wall morphology of weanling pigs fed sodium butyrate. J Anim Sci 85:1184–1191. doi:10.2527/jas.2006-378

    Article  CAS  PubMed  Google Scholar 

  • Binda F, Bossi E, Giovannardi S, Forlani G, Peres A (2002) Temperature effects on the presteady-state and transport-associated currents of GABA cotransporter rGAT1. FEBS Lett 512:303–307. doi:10.1016/S0014-5793(02)02271-8

    Article  CAS  PubMed  Google Scholar 

  • Bisesi JH, Ngo T, Ponnavolu S, Liu K, Lavelle CM, Afrooz ARMN, Saleh NB, Ferguson PL, Denslow ND, Sabo-Attwood T (2015) Examination of single-walled carbon nanotubes uptake and toxicity from dietary exposure: tracking movement and impacts in the gastrointestinal system. Nanomaterials 5:1066–1086. doi:10.3390/nano5021066

    Article  CAS  Google Scholar 

  • Bogé G, Rigal A, Peres G (1981) Rates of in vivo intestinal absorption of glycine and glycylglycine by rainbow trout (Salmo gairdneri R.). Comp Biochem Physiol A Physiol 69:455–459. doi:10.1016/0300-9629(81)93004-8

    Article  Google Scholar 

  • Boll M, Daniel H (1995) Target size analysis of the peptide/H+-symporter in kidney brush-border membranes. Biochim Biophys Acta 1233:145–152. doi:10.1016/0005-2736(94)00245-K

    Article  PubMed  Google Scholar 

  • Bossi E, Fabbrini MS, Ceriotti A (2007) Exogenous protein expression in Xenopus oocytes: basic procedures. Methods Mol Biol 375:107–131. doi:10.1007/978-1-59745-388-2_6

    CAS  PubMed  Google Scholar 

  • Bossi E, Cherubino F, Margheritis E, Oyadeyi AS, Vollero A, Peres A (2012) Temperature effects on the kinetic properties of the rabbit intestinal oligopeptide cotransporter PepT1. Pflugers Arch 464:183–191. doi:10.1007/s00424-012-1125-8

    Article  CAS  PubMed  Google Scholar 

  • Boudry G, David ES, Douard V, Monteiro IM, Le Huërou-Luron I, Ferraris RP (2010) Role of intestinal transporters in neonatal nutrition: carbohydrates, proteins, lipids, minerals, and vitamins. J Pediatr Gastroenterol Nutr 51:380–401. doi:10.1097/MPG.0b013e3181eb5ad6

    Article  CAS  PubMed  Google Scholar 

  • Bradford MMV, Gous RM (1991) The response of growing pigs to a choice of diets differing in protein content. Anim Sci 52:185–192. doi:10.1017/S0003356100005821

    Google Scholar 

  • Brandsch M (2009) Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls. Expert Opin Drug Metab Toxicol 5:887–905. doi:10.1517/17425250903042292

    Article  CAS  PubMed  Google Scholar 

  • Brandsch M (2013) Drug transport via the intestinal peptide transporter PepT1. Curr Opin Pharmacol 13:881–887. doi:10.1016/j.coph.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  • Braunschweig CL, Levy P, Sheean PM, Wang X (2001) Enteral compared to parenteral nutrition: a meta-analysis. Am J Clin Nutr 74:534–542

    CAS  PubMed  Google Scholar 

  • Brawand D, Wagner CE, Li YI, Malinsky M, Keller I, Fan S, Simakov O, Ng AY, Lim ZW, Bezault E, Turner-Maier J, Johnson J, Alcazar R, Noh HJ, Russell P, Aken B, Alföldi J, Amemiya C, Azzouzi N, Baroiller JF, Barloy-Hubler F, Berlin A, Bloomquist R, Carleton KL, Conte MA, D’Cotta H, Eshel O, Gaffney L, Galibert F, Gante HF, Gnerre S, Greuter L, Guyon R, Haddad NS, Haerty W, Harris RM, Hofmann HA, Hourlier T, Hulata G, Jaffe DB, Lara M, Lee AP, MacCallum I, Mwaiko S, Nikaido M, Nishihara H, Ozouf-Costaz C, Penman DJ, Przybylski D, Rakotomanga M, Renn SC, Ribeiro FJ, Ron M, Salzburger W, Sanchez-Pulido L, Santos ME, Searle S, Sharpe T, Swofford R, Tan FJ, Williams L, Young S, Yin S, Okada N, Kocher TD, Miska EA, Lander ES, Venkatesh B, Fernald RD, Meyer A, Ponting CP, Streelman JT, Lindblad-Toh K, Seehausen O, Di Palma F (2014) The genomic substrate for adaptive radiation in African cichlid fish. Nature 513:375–381. doi:10.1038/nature13726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bröer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88:249–286. doi:10.1152/physrev.00018.2006

    Article  PubMed  CAS  Google Scholar 

  • Bruzzoni-Giovanelli H, González JR, Sigaux F, Villoutreix BO, Cayuela JM, Guilhot J, Preudhomme C, Guilhot F, Poyet JL, Rousselot P (2015) Genetic polymorphisms associated with increased risk of developing chronic myelogenous leukemia. Oncotarget 6:36269–36277. doi:10.18632/oncotarget.5915

    PubMed  PubMed Central  Google Scholar 

  • Bucking C, Schulte PM (2012) Environmental and nutritional regulation of expression and function of two peptide transporter (PepT1) isoforms in a euryhaline teleost. Comp Biochem Physiol A Mol Integr Physiol 161:379–387. doi:10.1016/j.cbpa.2011.12.008

    Article  CAS  PubMed  Google Scholar 

  • Bucking C, Wood CM (2006) Water dynamics in the digestive tract of the freshwater rainbow trout during the processing of a single meal. J Exp Biol 209:1883–1893. doi:10.1242/jeb.02205

    Article  CAS  PubMed  Google Scholar 

  • Buddington RK, Krogdahl A, Bakke-Mckellep AM (1997) The intestines of carnivorous fish: structure and functions and the relations with diet. Acta Physiol Scand 638:67–80

    CAS  Google Scholar 

  • Buyse M, Tsocas A, Walker F, Merlin D (2002a) Bado A (2002b) PepT1-mediated fMLP transport induces intestinal inflammation in vivo. Am J Physiol Cell Physiol 283(6):C1795–C1800. doi:10.1152/ajpcell.00186.2002

    Article  CAS  PubMed  Google Scholar 

  • Buyse M, Sitaraman SV, Liu X, Bado A, Merlin D (2002b) Luminal leptin enhances CD147/MCT-1-mediated uptake of butyrate in the human intestinal cell line Caco2-BBE. J Biol Chem 277:28182–28190. doi:10.1074/jbc.M203281200

    Article  CAS  PubMed  Google Scholar 

  • Cai ZN, Li WJ, Mai KS, Xu W, Zhang YJ, Ai QH (2015) Effects of dietary size-fractionated fish hydrolysates on growth, activities of digestive enzymes and aminotransferases and expression of some protein metabolism related genes in large yellow croaker (Larimichthys crocea) larvae. Aquaculture 440:40–47. doi:10.1016/j.aquaculture.2015.01.026

    Article  CAS  Google Scholar 

  • Cao M, Che L, Wang J, Yang M, Su G, Fang Z, Lin Y, Xu S, Wu D (2014) Effects of maternal over- and undernutrition on intestinal morphology, enzyme activity, and gene expression of nutrient transporters in newborn and weaned pigs. Nutrition 30:1442–1447. doi:10.1016/j.nut.2014.04.016

    Article  CAS  PubMed  Google Scholar 

  • Castro LF, Gonçalves O, Mazan S, Tay BH, Venkatesh B, Wilson JM (2013) Recurrent gene loss correlates with the evolution of stomach phenotypes in gnathostome history. Proc Biol Sci 281:20132669. doi:10.1098/rspb.2013.2669

    Article  PubMed  CAS  Google Scholar 

  • Cedernaes J, Olszewski PK, Almén MS, Stephansson O, Levine AS, Fredriksson R, Nylander O, Schiöth HB (2011) Comprehensive analysis of localization of 78 solute carrier genes throughout the subsections of the rat gastrointestinal tract. Biochem Biophys Res Commun 411:702–707. doi:10.1016/j.bbrc.2011.07.005

    Article  CAS  PubMed  Google Scholar 

  • Chadwick VS, Mellor DM, Myers DB, Selden AC, Keshavarzian A, Broom MF, Hobson CH (1988) Production of peptides inducing chemotaxis and lysosomal enzyme release in human neutrophils by intestinal bacteria in vitro and in vivo. Scand J Gastroenterol 23:121–128. doi:10.3109/00365528809093861

    Article  CAS  PubMed  Google Scholar 

  • Chalamaiah M, Dinesh Kumar B, Hemalatha R, Jyothirmayi T (2012) Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chem 135:3020–3038. doi:10.1016/j.foodchem.2012.06.100

    Article  CAS  PubMed  Google Scholar 

  • Chappell VL, Thompson MD, Jeschke MG, Chung DH, Thompson JC, Wolf SE (2003) Effects of incremental starvation on gut mucosa. Dig Dis Sci 48:765–769. doi:10.1023/A:1022849112100

    Article  PubMed  Google Scholar 

  • Chauvigné F, Gabillard JC, Weil C, Rescan PY (2003) Effect of refeeding on IGFI, IGFII, IGF receptors, FGF2, FGF6, and myostatin mRNA expression in rainbow trout myotomal muscle. Gen Comp Endocrinol 132:209–215. doi:10.1016/S0016-6480(03)00081-9

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Wong EA, Webb KE Jr (1999) Tissue distribution of a peptide transporter mRNA in sheep, dairy cows, pigs, and chickens. J Anim Sci 77:1277–1283

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Pan YX, Wong EA, Bloomquist JR, Webb KE Jr (2002) Molecular cloning and functional characterization of a chicken intestinal peptide transporter (cPepT1) in Xenopus oocytes and Chinese hamster ovary cells. J Nutr 132:387–393

    CAS  PubMed  Google Scholar 

  • Chen H, Pan Y, Wong EA, Webb KE Jr (2005) Dietary protein level and stage of development affect expression of an intestinal peptide transporter (cPepT1) in chickens. J Nutr 135:193–198

    CAS  PubMed  Google Scholar 

  • Chen YH, Lu YF, Ko TY, Tsai MY, Lin CY, Lin CC, Hwang SP (2009) Zebrafish cdx1b regulates differentiation of various intestinal cell lineages. Dev Dyn 238:1021–1032. doi:10.1002/dvdy.21908

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Singh A, Xiao F, Dringenberg U, Wang J, Engelhardt R, Yeruva S, Rubio-Aliaga I, Nässl AM, Kottra G, Daniel H, Seidler U (2010) Gene ablation for PEPT1 in mice abolishes the effects of dipeptides on small intestinal fluid absorption, short-circuit current, and intracellular pH. Am J Physiol Gastrointest Liver Physiol 299:G265–G274. doi:10.1152/ajpgi.00055.2010

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Zhang H, Zheng Y, Shan A, Bi Z (2013) Effects of enzymatically hydrolyzed blood cells on growth performance and intestinal characteristics of newly weaned piglets. Livest Sci 157:514–519. doi:10.1016/j.livsci.2013.09.004

    Article  Google Scholar 

  • Chen MX, Li XG, Yan HC, Wang XQ, Gao CQ (2016) Effect of egg weight on composition, embryonic growth, and expression of amino acid transporter genes in yolk sac membranes and small intestines of the domestic pigeon (Columba livia). Poult Sci 95:1425–1432. doi:10.3382/ps/pew044

    Article  PubMed  Google Scholar 

  • Chotikachinda R, Tantikitti C, Benjakul S, Rustad T, Kumarnsit E (2013) Production of protein hydrolysates from skipjack tuna (Katsuwonus pelamis) viscera as feeding attractants for Asian seabass (Lates calcarifer). Aquacult Nutr 19:773–784. doi:10.1111/anu.12024

    Article  CAS  Google Scholar 

  • Clausen MR, Mortensen PB (1994) Kinetic studies on the metabolism of short-chain fatty acids and glucose by isolated rat colonocytes. Gastroenterology 106:423–432

    Article  CAS  PubMed  Google Scholar 

  • Collins SA, Overland M, Skrede A, Drew MD (2013) Effect of plant protein sources on growth rate in salmonids: meta-analysis of dietary inclusion of soybean, pea and canola/rapeseed meals and protein concentrates. Aquaculture 400:85–100. doi:10.1016/j.aquaculture.2013.03.006

    Article  CAS  Google Scholar 

  • Conceição LEC, Grasdalen H, Rønnestad I (2003) Amino acid requirements of fish larvae and post-larvae: new tools and recent findings. Aquaculture 227:221–232. doi:10.1016/S0044-8486(03)00505-2

    Article  CAS  Google Scholar 

  • Conceição LEC, Ribeiro L, Engrola S, Aragão C, Morais S, Lacuisse M, Soares F, Dinis MT (2007) Nutritional physiology during development of Senegalese sole (Solea senegalensis). Aquaculture 268:64–81. doi:10.1016/j.aquaculture.2007.04.030

    Article  CAS  Google Scholar 

  • Conceição LE, Aragão C, Dias J, Costas B, Terova G, Martins C, Tort L (2012) Dietary nitrogen and fish welfare. Fish Physiol Biochem 38:119–141. doi:10.1007/s10695-011-9592-y

    Article  PubMed  CAS  Google Scholar 

  • Cook JT, Sutterlin AM, McNiven MA (2000) Effect of food deprivation on oxygen consumption and body composition of growth-enhanced transgenic Atlantic salmon (Salmo salar). Aquaculture 188:47–63. doi:10.1016/S0044-8486(00)00333-1

    Article  Google Scholar 

  • Coppes Petricorena ZL, Somero GN (2007) Biochemical adaptations of notothenioid fishes: comparisons between cold temperate South American and New Zealand species and Antarctic species. Comp Biochem Physiol A Mol Integr Physiol 147:799–807. doi:10.1016/j.cbpa.2006.09.028

    Article  CAS  Google Scholar 

  • Cordero H, Guzmán-Villanueva LT, Chaves-Pozo E, Arizcun M, Ascencio-Valle F, Cuesta A, Esteban MA (2016) Comparative ontogenetic development of two marine teleosts, gilthead seabream and European sea bass: New insights into nutrition and immunity. Dev Comp Immunol 65:1–7. doi:10.1016/j.dci.2016.06.011

    Article  PubMed  Google Scholar 

  • Cramp RL, Franklin CE (2003) Is re-feeding efficiency compromised by prolonged starvation during aestivation in the green striped burrowing frog, Cyclorana alboguttata? J Exp Zool A Comp Exp Biol 300:126–132. doi:10.1002/jez.a.10272

    Article  PubMed  Google Scholar 

  • Croom WJ, Brake J, Coles BA, Havenstein GB, Christensen VL, McBride BW, Peebles ED, Taylor IL (1999) Is intestinal absorption capacity rate-limiting for performance in poultry? J Appl Poult Res 8:242–252. doi:10.1093/japr/8.2.242

    Article  Google Scholar 

  • Cummings JH (1981) Short chain fatty acids in the human colon. Gut 22:763–779. doi:10.1136/gut.22.9.763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings JH, Macfarlane GT (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70:443–459. doi:10.1111/j.1365-2672.1991.tb02739.x

    Article  CAS  PubMed  Google Scholar 

  • Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227. doi:10.1136/gut.28.10.1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cyrino JEP, Bureau DP, Kapoor BG (2008) Feeding and digestive functions of fishes. Science Publisher, Enfield

    Google Scholar 

  • D’Inca R, Gras-Le Guen C, Che L, Sangild PT, Le Huërou-Luron I (2011) Intrauterine growth restriction delays feeding-induced gut adaptation in term newborn pigs. Neonatology 99:208–216. doi:10.1159/000314919

    Article  PubMed  Google Scholar 

  • Dabrowski K, Lee KJ, Rinchard J (2003) The smallest vertebrate, teleost fish, can utilize synthetic dipeptide-based diets. J Nutr 133:4225–4229

    CAS  PubMed  Google Scholar 

  • Dabrowski K, Terjesen BF, Zhang Y, Phang JM, Lee KJ (2005) A concept of dietary dipeptides: a step to resolve the problem of amino acid availability in the early life of vertebrates. J Exp Biol 208:2885–2894. doi:10.1242/jeb.01689

    Article  CAS  PubMed  Google Scholar 

  • Dabrowski K, Zhang YF, Kwasek K, Hliwa P, Ostaszewska T (2010) Effects of protein-, peptide- and free amino acid-based diets in fish nutrition. Aquacult Res 41:668–683. doi:10.1111/j.1365-2109.2010.02490.x

    Article  CAS  Google Scholar 

  • Dalmasso G, Charrier-Hisamuddin L, Nguyen HT, Yan Y, Sitaraman S, Merlin D (2008a) PepT1-mediated tripeptide KPV uptake reduces intestinal inflammation. Gastroenterology 134:166–178. doi:10.1053/j.gastro.2007.10.026

    Article  CAS  PubMed  Google Scholar 

  • Dalmasso G, Nguyen HTT, Yan Y, Charrier-Hisamuddin L, Sitaraman SV, Merlin D (2008b) Butyrate transcriptionally enhances peptide transporter PepT1 expression and activity. PLoS One 3(6):e2476. doi:10.1371/journal.pone.0002476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dalmasso G, Nguyen HT, Charrier-Hisamuddin L, Yan Y, Laroui H, Demoulin B, Sitaraman SV, Merlin D (2010) PepT1 mediates transport of the proinflammatory bacterial tripeptide l-Ala-γ-d-Glu-meso-DAP in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 299:G687–G696. doi:10.1152/ajpgi.00527.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel H (2004) Molecular and integrative physiology of intestinal peptide transport. Annu Rev Physiol 66:361–384. doi:10.1146/annurev.physiol.66.032102.144149

    Article  CAS  PubMed  Google Scholar 

  • Daniel H, Adibi SA (1994) Functional separation of dipeptide transport and hydrolysis in kidney brush border membrane vesicles. FASEB J 8:753–759

    CAS  PubMed  Google Scholar 

  • Daniel H, Kottra G (2004) The proton oligopeptide transporter family SLC15 in physiology and pharmacology. Pflugers Arch 447:610–618. doi:10.1007/s00424-003-1101-4

    Article  CAS  PubMed  Google Scholar 

  • Daniel H, Rubio-Aliaga I (2003) An update on renal peptide transporters. Am J Physiol Renal Physiol 284:F885–F892. doi:10.1152/ajprenal.00123.2002

    Article  CAS  PubMed  Google Scholar 

  • Daniel H, Zietek T (2015) Taste and move: glucose and peptide transporters in the gastrointestinal tract. Exp Physiol 100:1441–1450. doi:10.1113/EP085029

    Article  CAS  PubMed  Google Scholar 

  • Darcel NP, Liou AP, Tomé D, Raybould HE (2005) Activation of vagal afferents in the rat duodenum by protein digests requires PepT1. J Nutr 135:1491–1495

    CAS  PubMed  Google Scholar 

  • Darias MJ, Murray HM, Gallant JW, Douglas SE, Yúfera M, Martínez-Rodríguez G (2007) Ontogeny of pepsinogen and gastric proton pump expression in red porgy (Pagrus pagrus): determination of stomach functionality. Aquaculture 270:369–378. doi:10.1016/j.aquaculture.2007.04.045

    Article  CAS  Google Scholar 

  • Davies DR, Mamat B, Magnusson OT, Christensen J, Haraldsson MH, Mishra R, Pease B, Hansen E, Singh J, Zembower D, Kim H, Kiselyov AS, Burgin AB, Gurney ME, Stewart LJ (2009) Discovery of leukotriene A4 hydrolase inhibitors using metabolomics biased fragment crystallography. J Med Chem 52:4694–4715. doi:10.1021/jm900259h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day RD, German DP, Manjakasy JM, Farr I, Hansen MJ, Tibbetts IR (2011) Enzymatic digestion in stomachless fishes: how a simple gut accommodates both herbivory and carnivory. J Comp Physiol B 181:603–613. doi:10.1007/s00360-010-0546-y

    Article  CAS  PubMed  Google Scholar 

  • de Aguilar-Nascimento JE, Dock-Nascimento DB, Bragagnolo R (2010) Role of enteral nutrition and pharmaconutrients in conditions of splanchnic hypoperfusion. Nutrition 26:354–358. doi:10.1016/j.nut.2009.08.021

    Article  PubMed  CAS  Google Scholar 

  • de Beer M, Vrijkotte TG, Fall CH, van Eijsden M, Osmond C, Gemke RJ (2015) Associations of infant feeding and timing of linear growth and relative weight gain during early life with childhood body composition. Int J Obes (Lond) 39:586–592. doi:10.1038/ijo.2014.200

    Article  Google Scholar 

  • de la Ballina LR, Cano-Crespo S, González-Muñoz E, Bial S, Estrach S, Cailleteau L, Tissot F, Daniel H, Zorzano A, Ginsberg MH, Palacín M, Féral CC (2016) Amino acid transport associated to Cluster of Differentiation 98 heavy chain (CD98hc) iIs at the cross-road of oxidative stress and amino acid availability. J Biol Chem 291:9700–9711. doi:10.1074/jbc.M115.704254

    Article  PubMed  CAS  Google Scholar 

  • de Oliveira JE, Druyan S, Uni Z, Ashwell CM, Ferket PR (2009) Prehatch intestinal maturation of turkey embryos demonstrated through gene expression patterns. Poult Sci 88:2600–2609. doi:10.3382/ps.2008-00548

    Article  PubMed  CAS  Google Scholar 

  • Deng DF, Dominy W, Ju ZY, Koshio S, Murashige R, Wilson RP (2010) Dietary lysine requirement of juvenile Pacific threadfin (Polydactylus sexfilis). Aquaculture 308:44–48. doi:10.1016/j.aquaculture.2010.07.041

    Article  CAS  Google Scholar 

  • Deng J, Kong L, An Q, Bi B, Tao L, Zhang X (2011) Effect of dietary pH adjustment on the utilization of supplemental methionine and lysine by juvenile common carp, Cyprinus carpio. J World Aquac Soc 42:696–704. doi:10.1111/j.1749-7345.2011.00514.x

    Article  Google Scholar 

  • Diakogiannaki E, Pais R, Tolhurst G, Parker HE, Horscroft J, Rauscher B, Zietek T, Daniel H, Gribble FM, Reimann F (2013) Oligopeptides stimulate glucagon-like peptide-1 secretion in mice through proton-coupled uptake and the calcium-sensing receptor. Diabetologia 56:2688–2696. doi:10.1007/s00125-013-3037-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dmitriew CM (2011) The evolution of growth trajectories: what limits growth rate? Biol Rev Camb Philos Soc 86:97–116. doi:10.1111/j.1469-185X.2010.00136.x

    Article  PubMed  Google Scholar 

  • Do TT, Hindlet P, Waligora-Dupriet AJ, Kapel N, Neveux N, Mignon V, Deloménie C, Farinotti R, Fève B, Buyse M (2014) Disturbed intestinal nitrogen homeostasis in a mouse model of high-fat diet-induced obesity and glucose intolerance. Am J Physiol Endocrinol Metab 306:E668–E680. doi:10.1152/ajpendo.00437.2013

    Article  CAS  PubMed  Google Scholar 

  • Doki S, Kato HE, Solcan N, Iwaki M, Koyama M, Hattori M, Iwase N, Tsukazaki T, Sugita Y, Kandori H, Newstead S, Ishitani R, Nureki O (2013) Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT. Proc Natl Acad Sci USA 110:11343–11348. doi:10.1073/pnas.1301079110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong XY, Wang YM, Yuan C, Zou XT (2012) The ontogeny of nutrient transporter and digestive enzyme gene expression in domestic pigeon (Columba livia) intestine and yolk sac membrane during pre- and posthatch development. Poult Sci 91:1974–1982. doi:10.3382/ps.2012-02164

    Article  CAS  PubMed  Google Scholar 

  • Drakeford B, Pascoe S (2008) The substitutability of fishmeal and fish oil in diets for salmon and trout: a meta-analysis. Aquac Econ Manag 12:155–175. doi:10.1080/13657300802306079

    Article  Google Scholar 

  • Drew MD, Borgeson TL, Thiessen DL (2007) A review of processing of feed ingredients to enhance diet digestibility in finfish. Anim Feed Sci Tech 138:118–136. doi:10.1016/j.anifeedsci.2007.06.019

    Article  CAS  Google Scholar 

  • Drozdzik M, Gröer C, Penski J, Lapczuk J, Ostrowski M, Lai Y, Prasad B, Unadkat JD, Siegmund W, Oswald S (2014) Protein abundance of clinically relevant multidrug transporters along the entire length of the human intestine. Mol Pharm 11:3547–3555. doi:10.1021/mp500330y

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Zhu X, Han D, Yang Y, Xie S (2012) Dietary choline requirement in slight methionine-deficient diet for juvenile gibel carp (Carassius auratus gibelio). Aquacult Nutr 18:620–627. doi:10.1111/j.1365-2095.2011.00930.x

    Article  CAS  Google Scholar 

  • Dyer J, Beechey RB, Gorvel JP, Smith RT, Wootton R, Shirazi-Beechey SP (1990) Glycyl-l-proline transport in rabbit enterocyte basolateral-membrane vesicles. Biochem J 269:565–571. doi:10.1042/bj2690565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elias CL, Xue XH, Marshall CR, Omelchenko A, Hryshko LV, Tibbits GF (2001) Temperature dependence of cloned mammalian and salmonid cardiac Na+/Ca2+ exchanger isoforms. Am J Physiol Cell Physiol 281:C993–C1000

    CAS  PubMed  Google Scholar 

  • El-Sayed AFM (1999) Alternate dietary protein sources for farmed tilapia, Oreochromis spp. Aquaculture 179:149–168. doi:10.1016/S0044-8486(99)00159-3

    Article  Google Scholar 

  • Engelhardt WV, Luciano L, Reale E, Gros G, Rechkemmer G (1989) Transport of SCFA across the large intestinal epithelium of guinea pig. Acta Vet Scand Suppl 86:103–106

    CAS  PubMed  Google Scholar 

  • Erickson RH, Gum JR Jr, Lindstrom MM, McKean D, Kim YS (1995) Regional expression and dietary regulation of rat small intestinal peptide and amino acid transporter mRNAs. Biochem Biophys Res Commun 216:249–257. doi:10.1006/bbrc.1995.2617

    Article  CAS  PubMed  Google Scholar 

  • Esbaugh AJ, Grosell M (2014) Esophageal desalination is mediated by Na+, H+ exchanger-2 in the gulf toadfish (Opsanus beta). Comp Biochem Physiol A Mol Integr Physiol 171:57–63. doi:10.1016/j.cbpa.2014.02.012

    Article  CAS  PubMed  Google Scholar 

  • Espe M, Lemme A, Petri A, El-Mowafi A (2006) Can Atlantic salmon (Salmo salar) grow on diets devoid of fism meal? Aquaculture 255:255–262. doi:10.1016/j.aquaculture.2005.12.030

    Article  CAS  Google Scholar 

  • Espe M, Lemme A, Petri A, El-Mowafi A (2007) Assessment of lysine requirement for maximal protein accretion in Atlantic salmon using plant protein diets. Aquaculture 263:168–178. doi:10.1016/j.aquaculture.2006.10.018

    Article  CAS  Google Scholar 

  • Evans DH (2008a) Osmotic and ionic regulation: cells and animals. CRC Press, Boca Raton

    Book  Google Scholar 

  • Evans DH (2008b) Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. Am J Physiol Regul Integr Comp Physiol 295:R704–R713. doi:10.1152/ajpregu.90337.2008

    Article  CAS  PubMed  Google Scholar 

  • Everaert I, De Naeyer H, Taes Y, Derave W (2013) Gene expression of carnosine-related enzymes and transporters in skeletal muscle. Eur J Appl Physiol 113:1169–1179. doi:10.1007/s00421-012-2540-4

    Article  CAS  PubMed  Google Scholar 

  • Faggio C, Torre A, Lando G, Sabatino G, Trischitta F (2011) Carbonate precipitates and bicarbonate secretion in the intestine of sea bass, Dicentrarchus labrax. J Comp Physiol B 181:517–525. doi:10.1007/s00360-010-0538-y

    CAS  PubMed  Google Scholar 

  • Fei YJ, Sugawara M, Liu JC, Li HW, Ganapathy V, Ganapathy M, Leibach F (2000) cDNA structure, genomic organization, and promoter analysis of the mouse intestinal peptide transporter PEPT1. Biochim Biophys Acta 1492:145–154. doi:10.1016/S0167-4781(00)00101-9

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208. doi:10.1038/nrmicro773

    Article  CAS  PubMed  Google Scholar 

  • Ferraris RP, Carey HV (2000) Intestinal transport during fasting and malnutrition. Annu Rev Nutr 20:195–219. doi:10.1146/annurev.nutr.20.1.195

    Article  CAS  PubMed  Google Scholar 

  • Ferraris RP, Diamond JM (1989) Specific regulation of intestinal nutrient transporters by their dietary substrates. Annu Rev Physiol 51:125–141. doi:10.1146/annurev.ph.51.030189.001013

    Article  CAS  PubMed  Google Scholar 

  • Ferraris RP, Diamond J, Kwan WW (1988) Dietary regulation of intestinal transport of the dipeptide carnosine. Am J Physiol 255:G143–G150

    CAS  PubMed  Google Scholar 

  • Fields PA (2001) Review: protein function at thermal extremes: balancing stability and flexibility. Comp Biochem Physiol A: Mol Integr Physiol 129:417–431. doi:10.1016/S1095-6433(00)00359-7

    Article  CAS  Google Scholar 

  • Figueiredo-Silva C, Lemme A, Sangsue D, Kiriratnikom S (2015) Effect of DL-methionine supplementation on the success of almost total replacement of fish meal with soybean meal in diets for hybrid tilapia (Oreochromis niloticus x Oreochromis mossambicus). Aquacult Nutr 21:234–241. doi:10.1111/anu.12150

    Article  CAS  Google Scholar 

  • Fischer da Silva AV, Maiorka A, Borges SA, Santin E, Boleli IC, Macari M (2007) Surface area of the tip of the enterocytes in small intestine mucosa of broilers submitted to early feed restriction and supplemented with glutamine. Int J Poult Sci 6:31–35. doi:10.3923/ijps.2007.31.35

  • Fisher H, Griminger P, Leveille GA (1959) Protein depletion and amino acid requirement in the growing chick. J Nutr 69:117–123

    CAS  PubMed  Google Scholar 

  • Flores MV, Hall CJ, Davidson AJ, Singh PP, Mahagaonkar AA, Zon LI, Crosier KE, Crosier PS (2008) Intestinal differentiation in zebrafish requires Cdx1b, a functional equivalent of mammalian Cdx2. Gastroenterology 135:1665–1675. doi:10.1053/j.gastro.2008.07.024

    Article  CAS  PubMed  Google Scholar 

  • Forbes JM, Shariatmadari F (1994) Diet selection for protein by poultry. Worlds Poult Sci J 50:7–24. doi:10.1079/WPS19940002

    Article  Google Scholar 

  • Forster I, Ogata HY (1998) Lysine requirement of juvenile Japanese flounder Paralichthys olivaceus and juvenile red sea bream Pagrus major. Aquaculture 161:131–142. doi:10.1016/S0044-8486(97)00263-9

    Article  CAS  Google Scholar 

  • Fotiadis D, Kanai Y, Palacín M (2013) The SLC3 and SLC7 families of amino acid transporters. Mol Aspects Med 34:139–158. doi:10.1016/j.mam.2012.10.007

    Article  CAS  PubMed  Google Scholar 

  • Fowler PW, Orwick-Rydmark M, Radestock S, Solcan N, Dijkman PM, Lyons JA, Kwok J, Caffrey M, Watts A, Forrest LR, Newstead S (2015) Gating topology of the proton-coupled oligopeptide symporters. Structure 23:290–301. doi:10.1016/j.str.2014.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fredriksson R, Nordström KJ, Stephansson O, Hägglund MG, Schiöth HB (2008) The solute carrier (SLC) complement of the human genome: phylogenetic classification reveals four major families. FEBS Lett 582:3811–3816. doi:10.1016/j.febslet.2008.10.016

    Article  CAS  PubMed  Google Scholar 

  • Frøystad-Saugen MK, Lilleeng E, Bakke-McKellep AM, Vekterud K, Valen EC, Hemre GI, Krogdahl A (2009) Dietary intestinal gene expression in Atlantic salmon (Salmo salar L.) fed genetically modified maize. Aquacult Nutr 15:104–115. doi:10.1111/j.1365-2095.2008.00572.x

    Article  CAS  Google Scholar 

  • Fuentes J, Eddy FB (1997) Drinking in marine, euryhaline and freshwater teleost fish. In: Hazon N, Eddy FB, Flik G (eds) Ionic regulation in animals. Spring-Verlag, New York, pp 135–149

    Google Scholar 

  • Fujisawa Y, Tateoka R, Nara T, Kamo N, Taira T, Miyauchi S (2006) The extracellular pH dependency of transport activity by human oligopeptide transporter 1 (hPEPT1) expressed stably in Chinese hamster ovary (CHO) cells: a reason for the bell-shaped activity versus pH. Biol Pharm Bull 29:997–1005. doi:10.1248/bpb.29.997

    Article  CAS  PubMed  Google Scholar 

  • Gálfi P, Bokori J (1990) Feeding trial in pigs with a diet containing sodium n-butyrate. Acta Vet Hung 38:3–17

    PubMed  Google Scholar 

  • Gamet L, Daviaud D, Denis-Pouxviel C, Remesy C, Murat JC (1992) Effects of short-chain fatty acids on growth and differentiation of the human colon-cancer cell line HT29. Int J Cancer 52:286–289. doi:10.1002/ijc.2910520222

    Article  CAS  PubMed  Google Scholar 

  • Gao CQ, Yang JX, Chen MX, Yan HC, Wang XQ (2016) Growth curves and age-related changes in carcass characteristics, organs, serum parameters, and intestinal transporter gene expression in domestic pigeon (Columba livia). Poult Sci 95:867–877. doi:10.3382/ps/pev443

    Article  CAS  PubMed  Google Scholar 

  • Gatlin DM, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu G, Krogdahl A, Nelson R, Overturf K, Rust M, Sealey W, Skonberg D, Souza JE, Stone D, Wilson R, Wurtele E (2007) Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac Res 38:551–579. doi:10.1111/j.1365-2109.2007.01704.x

    Article  CAS  Google Scholar 

  • Gaylord TG, Rawles SD, Gatlin DM (2004) Amino acid availability from animal, blended, and plant feedstuffs for hybrid striped bass (Morone chrysops × M. saxatilis). Aquacult Nutr 10:345–352. doi:10.1111/j.1365-2095.2004.00310.x

    Article  CAS  Google Scholar 

  • Geyra A, Uni Z, Sklan D (2001) Enterocyte dynamics and mucosal development in the posthatch chick. Poult Sci 80:776–782. doi:10.1093/ps/80.6.776

    Article  CAS  PubMed  Google Scholar 

  • Gilbert ER, Li H, Emmerson DA, Webb KE Jr, Wong EA (2007) Developmental regulation of nutrient transporter and enzyme mRNA abundance in the small intestine of broilers. Poult Sci 86:1739–1753. doi:10.1093/ps/86.8.1739

    Article  CAS  PubMed  Google Scholar 

  • Gilbert ER, Li H, Emmerson DA, Webb KE Jr, Wong EA (2008a) Dietary protein quality and feed restriction influence abundance of nutrient transporter mRNA in the small intestine of broiler chicks. J Nutr 138:262–271

    CAS  PubMed  Google Scholar 

  • Gilbert ER, Wong EA, Webb KE Jr (2008b) Board-invited review: peptide absorption and utilization: Implications for animal nutrition and health. J Anim Sci 86:2135–2155. doi:10.2527/jas.2007-0826

    Article  CAS  PubMed  Google Scholar 

  • Gilbert ER, Li H, Emmerson DA, Webb KE Jr, Wong EA (2010) Dietary protein composition influences abundance of peptide and amino acid transporter messenger ribonucleic acid in the small intestine of 2 lines of broiler chicks. Poult Sci 89:1663–1676. doi:10.3382/ps.2010-00801

    Article  CAS  PubMed  Google Scholar 

  • Gisbert E, Skalli A, Fernandez I, Kotzamanis Y, Zambonino-Infante JL, Fabregat R (2012) Protein hydrolysates from yeast and pig blood as alternative raw materials in microdiets for gilthead sea bream (Sparus aurata) larvae. Aquaculture 338:96–104. doi:10.1016/j.aquaculture.2012.01.007

    Article  CAS  Google Scholar 

  • Glencloss BD, Booth M, Allan GL (2007) A feed is only as good as its ingredients: a review of ingredient evaluation strategies for aquaculture feeds. Aquac Nutr 13:17–34. doi:10.1111/j.1365-2095.2007.00450.x

    Article  Google Scholar 

  • Glencross B (2006) The nutritional management of barramundi, Lates calcarifer – a review. Aquacult Nutr 12:291–309. doi:10.1111/j.1365-2095.2006.00410.x

    Article  CAS  Google Scholar 

  • Gonçalves AF, Castro LF, Pereira-Wilson C, Coimbra J, Wilson JM (2007) Is there a compromise between nutrient uptake and gas exchange in the gut of Misgurnus anguillicaudatus, an intestinal air-breathing fish? Comp Biochem Physiol Part D Genomics Proteomics 2:345–355. doi:10.1016/j.cbd.2007.08.002

    Article  PubMed  CAS  Google Scholar 

  • Gorboulev V, Schürmann A, Vallon V, Kipp H, Jaschke A, Klessen D, Friedrich A, Scherneck S, Rieg T, Cunard R, Veyhl-Wichmann M, Srinivasan A, Balen D, Breljak D, Rexhepaj R, Parker HE, Gribble FM, Reimann F, Lang F, Wiese S, Sabolic I, Sendtner M, Koepsell H (2012) Na+-d-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61:187–196. doi:10.2337/db11-1029

    Article  CAS  PubMed  Google Scholar 

  • Gorka P, Kowalski ZM, Pietrzak P, Kotunia A, Kiljanczyk R, Flaga J, Holst JJ, Guilloteau P, Zabielski R (2009) Effect of sodium butyrate supplementation in milk replacer and starter diet on rumen development in calves. J Physiol Pharmacol 60:47–53

    PubMed  Google Scholar 

  • Gousset B (1990) European eel (Anguilla anguilla L.) farming technologies in Europe and in Japan: application of a comparative analysis. Aquaculture 87:209–235. doi:10.1016/0044-8486(90)90060-Z

    Article  Google Scholar 

  • Gramlich L, Kichian K, Pinilla J, Rodych NJ, Dhaliwal R, Heyland DK (2004) Does enteral nutrition compared to parenteral nutrition result in better outcomes in critically ill adult patients? A systematic review of the literature. Nutrition 20:843–848. doi:10.1016/j.nut.2004.06.003

    Article  PubMed  Google Scholar 

  • Grosell M (2006) Intestinal anion exchange in marine fish osmoregulation. J Exp Biol 209:2813–2827. doi:10.1242/jeb.02345

    Article  CAS  PubMed  Google Scholar 

  • Grosell M (2011) Intestinal anion exchange in marine teleosts is involved in osmoregulation and contributes to the oceanic inorganic carbon cycle. Acta Physiol 202:421–434. doi:10.1111/j.1748-1716.2010.02241.x

    Article  CAS  Google Scholar 

  • Grosell M, Farrell AP, Brauner CJ (2011) The multifunctional gut of fish. Academic Press, London

    Google Scholar 

  • Guandalini S, Rubino A (1982) Development of dipeptide transport in the intestinal mucosa of rabbits. Pediatr Res 16:99–103. doi:10.1203/00006450-198202000-00004

    Article  CAS  PubMed  Google Scholar 

  • Guerrini L, Gong SS, Mangasarian K, Basilico C (1993) Cis- and trans-acting elements involved in amino acid regulation of asparagine synthetase gene expression. Mol Cell Biol 13:3202–3212. doi:10.1128/MCB.13.6.3202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guettou F, Quistgaard EM, Trésaugues L, Moberg P, Jegerschöld C, Zhu L, Jong AJ, Nordlund P, Löw C (2013) Structural insights into substrate recognition in proton-dependent oligopeptide transporters. EMBO Rep 14:804–810. doi:10.1038/embor.2013.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habold C, Chevalier C, Dunel-Erb S, Foltzer-Jourdainne C, Le Maho Y, Lignot JH (2004) Effects of fasting and refeeding on jejunal morphology and cellular activity in rats in relation to depletion of body stores. Scand J Gastroenterol 39:531–539. doi:10.1080/00365520410004514

    Article  CAS  PubMed  Google Scholar 

  • Habold C, Foltzer-Jourdainne C, Le Maho Y, Lignot JH, Oudart H (2005) Intestinal gluconeogenesis and glucose transport according to body fuel availability in rats. J Physiol 566:575–586. doi:10.1113/jphysiol.2005.085217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habold C, Reichardt F, Foltzer-Jourdainne C, Lignot JH (2007) Morphological changes of the rat intestinal lining in relation to body stores depletion during fasting and refeeding. Pflugers Arch 455:323–332. doi:10.1007/s00424-007-0289-0

    Article  CAS  PubMed  Google Scholar 

  • Hakim Y, Harpaz S, Uni Z (2009) Expression of brush border enzymes and transporters in the intestine of European sea bass (Dicentrarchus labrax) following food deprivation. Aquaculture 290:110–115. doi:10.1016/j.aquaculture.2009.02.008

    Article  CAS  Google Scholar 

  • Haller S, Schuler F, Lazic SE, Bachir-Cherif D, Krämer SD, Parrott NJ, Steiner G, Belli S (2012) Expression profiles of metabolic enzymes and drug transporters in the liver and along the intestine of beagle dogs. Drug Metab Dispos 40:1603–1610. doi:10.1124/dmd.112.045443

    Article  CAS  PubMed  Google Scholar 

  • Han JW, Zheng HF, Cui Y, Sun LD, Ye DQ, Hu Z, Xu JH, Cai ZM, Huang W, Zhao GP, Xie HF, Fang H, Lu QJ, Xu JH, Li XP, Pan YF, Deng DQ, Zeng FQ, Ye ZZ, Zhang XY, Wang QW, Hao F, Ma L, Zuo XB, Zhou FS, Du WH, Cheng YL, Yang JQ, Shen SK, Li J, Sheng YJ, Zuo XX, Zhu WF, Gao F, Zhang PL, Guo Q, Li B, Gao M, Xiao FL, Quan C, Zhang C, Zhang Z, Zhu KJ, Li Y, Hu DY, Lu WS, Huang JL, Liu SX, Li H, Ren YQ, Wang ZX, Yang CJ, Wang PG, Zhou WM, Lv YM, Zhang AP, Zhang SQ, Lin D, Li Y, Low HQ, Shen M, Zhai ZF, Wang Y, Zhang FY, Yang S, Liu JJ, Zhang XJ (2009) Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 41:1234–1237. doi:10.1038/ng.472

    Article  CAS  PubMed  Google Scholar 

  • Hardy RW (1996) Alternate protein sources for salmon and trout diets. Anim Feed Sci Tech 59:71–80. doi:10.1016/0377-8401(95)00888-8

    Article  Google Scholar 

  • Harris LE (1980) Diet stuffs. In: Pillay TVR (ed) Fish Diet Technology. UNDP/FAO, Rome, pp 111–168

    Google Scholar 

  • Hart HR, Evans AN, Gelsleichter J, Ahearn GA (2016) Molecular identification and functional characteristics of peptide transporters in the bonnethead shark (Sphyrna tiburo). J Comp Physiol B 186:855–866. doi:10.1007/s00360-016-0999-8

    Article  CAS  PubMed  Google Scholar 

  • Harter TS, Verreth JA, Heinsbroek LT, Schrama JW (2013) Isoenergetic replacement of fat by starch in diets for African catfish (Clarias gariepinus): effect on water fluxes in the gastro intestinal tract. PLoS ONE 8:e55245. doi:10.1371/journal.pone.0055245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harter TS, Heinsbroek LTN, Schrama JW (2015) The source of dietary non-protein energy affects in vivo protein digestion in African catfish (Clarias gariepinus). Aquacult Nutr 21:569–577. doi:10.1111/anu.12185

    Article  CAS  Google Scholar 

  • Hazama A, Loo DD, Wright EM (1997) Presteady-state currents of the rabbit Na+/glucose cotransporter (SGLT1). J Membr Biol 155:175–186. doi:10.1007/s002329900169

    Article  CAS  PubMed  Google Scholar 

  • He L, Vasiliou K, Nebert DW (2009) Analysis and update of the human solute carrier (SLC) gene superfamily. Hum Genomics 3:195–206. doi:10.1186/1479-7364-3-2-195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hector KL, Nakagawa S (2012) Quantitative analysis of compensatory and catch-up growth in diverse taxa. J Anim Ecol 81:583–593. doi:10.1111/j.1365-2656.2011.01942.x

    Article  PubMed  Google Scholar 

  • Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, Bruford EA (2004) The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Pflugers Arch 447:465–468. doi:10.1007/s00424-003-1192-y

    Article  CAS  PubMed  Google Scholar 

  • Hediger MA, Clémençon B, Burrier RE, Bruford EA (2013) The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol Aspects Med 34:95–107. doi:10.1016/j.mam.2012.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera-Ruiz D, Wang Q, Gudmundsson OS, Cook TJ, Smith RL, Faria TN, Knipp GT (2001) Spatial expression patterns of peptide transporters in the human and rat gastrointestinal tracts, Caco-2 in vitro cell culture model, and multiple human tissues. AAPS PharmSci. 3:E9. doi:10.1208/ps030109

    Article  CAS  PubMed  Google Scholar 

  • Hevrøy EM, Espe M, Waagbø R, Sandnes K, Ruud M, Hemre GI (2005) Nutrient utilization in Atlentic salmon (Salmo salar L.) fed increased levels of fish protein hydrolysate during a period of fast growth. Aquacult Nutr 11:301–313. doi:10.1111/j.1365-2095.2005.00357.x

    Article  Google Scholar 

  • Hilgemann DW, Lu CC (1999) GAT1 (GABA:Na+:Cl) cotransport function. Database reconstruction with an alternating access model. J Gen Physiol 114:459–475. doi:10.1085/jgp.114.3.459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell AL, Karlsson J (2007) Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos 35:1333–1340. doi:10.1124/dmd.107.014902

    Article  CAS  PubMed  Google Scholar 

  • Himukai M, Konno T, Hoshi T (1980) Age-dependent change in intestinal absorption of dipeptides and their constituent amino acids in the guinea pig. Pediatr Res 14:1272–1275. doi:10.1203/00006450-198011000-00024

    Article  CAS  PubMed  Google Scholar 

  • Hirano T, Mayer-Gostan N (1976) Eel esophagus as an osmoregulatory organ. Proc Natl Acad Sci USA 73:1348–1350. doi:10.1073/pnas.73.4.1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Höglund PJ, Nordström KJ, Schiöth HB, Fredriksson R (2011) The solute carrier families have a remarkably long evolutionary history with the majority of the human families present before divergence of Bilaterian species. Mol Biol Evol 28:1531–1541. doi:10.1093/molbev/msq350

    Article  PubMed  CAS  Google Scholar 

  • Horn MH, Gawlicka AK, German DP, Logothetis EA, Cavanagh JW, Boyle KS (2006) Structure and function of the stomachless digestive system in three related species of the New World silverside fishes (Atherinopsidae) representing herbivory, omnivory, and carnivory. Mar Biol 149:1237–1245. doi:10.1007/s00227-006-0281-9

    Article  Google Scholar 

  • Houlihan DF, Carter CG, McCarthy ID (1995) Protein synthesis in fish. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes, vol 4., Metabolic biochemistryElsevier Biomedical, Amsterdam, pp 191–200

    Google Scholar 

  • Howard A, Goodlad RA, Walters JR, Ford D, Hirst BH (2004) Increased expression of specific intestinal amino acid and peptide transporter mRNA in rats fed by TPN is reversed by GLP-2. J Nutr 134:2957–2964

    CAS  PubMed  Google Scholar 

  • Hu Y, Smith DE, Ma K, Jappar D, Thomas W, Hillgren KM (2008) Targeted disruption of peptide transporter Pept1 gene in mice significantly reduces dipeptide absorption in intestine. Mol Pharm 5:1122–1130. doi:10.1021/mp8001655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu B, Chen H, Liu X, Zhang C, Cole GJ, Lee JA, Chen X (2013) Transgenic overexpression of cdx1b induces metaplastic changes of gene expression in zebrafish esophageal squamous epithelium. Zebrafish 10:218–227. doi:10.1089/zeb.2012.0784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Xie Y, Keep RF, Smith DE (2014) Divergent developmental expression and function of the proton-coupled oligopeptide transporters PepT2 and PhT1 in regional brain slices of mouse and rat. J Neurochem 129:955–965. doi:10.1111/jnc.12687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua K, Bureau DP (2012) Exploring the possibility of quantifying the effects of plant protein ingredients in fish feeds using meta-analysis and nutritional model simulation-based approaches. Aquaculture 356:284–301. doi:10.1016/j.aquaculture.2012.05.003

    Article  CAS  Google Scholar 

  • Huang Q, Vera Delgado JM, Seni Pinoargote OD, Llaguno RA (2015) Molecular evolution of the Slc15 family and its response to waterborne copper and mercury exposure in tilapia. Aquat Toxicol 163:140–147. doi:10.1016/j.aquatox.2015.04.011

    Article  CAS  PubMed  Google Scholar 

  • Huhtanen P, Miettinen H, Ylinen M (1993) Effect of increasing ruminal butyrate on milk yield and blood constituents in dairy cows fed a grass silage-based diet. J Dairy Sci 76:1114–1124. doi:10.3168/jds.S0022-0302(93)77440-8

    Article  CAS  PubMed  Google Scholar 

  • Hume ID, Biebach H (1996) Digestive tract function in the long-distance migratory garden warbler, Sylvia borin. J Comp Physiol B 166:388–395. doi:10.1007/BF02336922

    Article  Google Scholar 

  • Hussain I, Kellett GL, Affleck J, Shepherd EJ, Boyd CAR (2002) Expression and cellular distribution during development of the peptide transporter (PepT1) in the small intestinal epithelium of the rat. Cell Tissue Res 307:139–142. doi:10.1007/s00441-001-0473-z

    Article  CAS  PubMed  Google Scholar 

  • Ihara T, Tsujikawa T, Fujiyama Y, Bamba T (2000) Regulation of PEPT1 peptide transporter expression in the rat small intestine under malnourished conditions. Digestion 61:59–67. doi:10.1159/000007736

    Article  CAS  PubMed  Google Scholar 

  • Ingersoll SA, Ayyadurai S, Charania MA, Laroui H, Yan Y, Merlin D (2012) The role and pathophysiological relevance of membrane transporter PepT1 in intestinal inflammation and inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 302:G484–G492. doi:10.1152/ajpgi.00477.2011

    Article  CAS  PubMed  Google Scholar 

  • Irie M, Terada T, Okuda M, Inui K (2004) Efflux properties of basolateral peptide transporter in human intestinal cell line Caco-2. Pflugers Arch 449:186–194. doi:10.1007/s00424-004-1326-x

    Article  CAS  PubMed  Google Scholar 

  • Irie M, Terada T, Katsura T, Matsuoka S, Inui K (2005) Computational modelling of H+-coupled peptide transport via human PEPT1. J Physiol 565:429–439. doi:10.1113/jphysiol.2005.084582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismair MG, Vavricka SR, Kullak-Ublick GA, Fried M, Mengin-Lecreulx D, Girardin SE (2006) hPepT1 selectively transports muramyl dipeptide but not Nod1-activating muramyl peptides. Can J Physiol Pharmacol 84:1313–1319. doi:10.1139/y06-076

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Yamaguchi M, Noma T, Yamaji T, Itoh H, Oda M (2016) Whey protein hydrolysates enhance water absorption in the perfused small intestine of anesthetized rats. Biosci Biotechnol Biochem 80:1587–1593. doi:10.1080/09168451.2016.1166931

    Article  CAS  PubMed  Google Scholar 

  • Iwanaga T, Kishimoto A (2015) Cellular distributions of monocarboxylate transporters: a review. Biomed Res 36:279–301. doi:10.2220/biomedres.36.279

    Article  CAS  PubMed  Google Scholar 

  • Jakab RL, Collaco AM, Ameen NA (2011) Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine. Am J Physiol Gastrointest Liver Physiol 300:G82–G98. doi:10.1152/ajpgi.00245.2010

    Article  CAS  PubMed  Google Scholar 

  • Jayathilakan K, Sultana K, Radhakrishna K, Bawa AS (2012) Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. J Food Sci Technol 49:278–293. doi:10.1007/s13197-011-0290-7

    Article  CAS  PubMed  Google Scholar 

  • Jean C, Fromentin G, Tomé D, Larue-Achagiotis C (2002) Wistar rats allowed to self-select macronutrients from weaning to maturity choose a high-protein, high-lipid diet. Physiol Behav 76:65–73. doi:10.1016/S0031-9384(02)00676-5

    Article  CAS  PubMed  Google Scholar 

  • Jobling M (1986) Gastrointestinal overload: a problem with formulated feeds? Aquaculture 51:257–263. doi:10.1016/0044-8486(86)90317-0

    Article  Google Scholar 

  • Kakizaki F, Aoki K, Miyoshi H, Carrasco N, Aoki M, Taketo MM (2010) CDX transcription factors positively regulate expression of solute carrier family 5, member 8 in the colonic epithelium. Gastroenterology 138:627–635. doi:10.1053/j.gastro.2009.10.047

    Article  CAS  PubMed  Google Scholar 

  • Kalujnaia S, McWilliam IS, Zaguinaiko VA, Feilen AL, Nicholson J, Hazon N, Cutler CP (2007) Cramb G (2007) Transcriptomic approach to the study of osmoregulation in the European eel Anguilla anguilla. Physiol Genomics 31:385–401. doi:10.1152/physiolgenomics.00059.2007

    Article  CAS  PubMed  Google Scholar 

  • Kamal MA, Keep RF, Smith DE (2008) Role and relevance of PEPT2 in drug disposition, dynamics, and toxicity. Drug Metab Pharmacokinet 23:236–242. doi:10.2133/dmpk.23.236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamalam BS, Panserat S, Aguirre P, Geurden I, Fontagné-Dicharry S, Médale F (2013) Selection for high muscle fat in rainbow trout induces potentially higher chylomicron synthesis and PUFA biosynthesis in the intestine. Comp Biochem Physiol A Mol Integr Physiol 164:417–427. doi:10.1016/j.cbpa.2012.11.020

    Article  CAS  PubMed  Google Scholar 

  • Kamaszewski M, Prasek M, Ostaszewska T, Dabrowski K (2014) The influence of feeding diets containing wheat gluten supplemented with dipeptides or free amino acids on structure and development of the skeletal muscle of carp (Cyprinus carpio). Aquacult Int 22:259–271. doi:10.007/s10499-013-9683-0

    Article  CAS  Google Scholar 

  • Karakossian MH, Spencer SR, Gomez AQ, Padilla OR, Sacher A, Loo DD, Nelson N, Eskandari S (2005) Novel properties of a mouse gamma-aminobutyric acid transporter (GAT4). J Membr Biol 203:65–82. doi:10.1007/s00235-004-0732-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karasov WH, Douglas AE (2013) Comparative digestive physiology. Compr Physiol 3:741–783. doi:10.1002/cphy.c110054

    PubMed  PubMed Central  Google Scholar 

  • Karasov WH, Hume ID (1997) Vertebrate gastrointestinal system. In: Dantzler W (ed) Handbook of comparative physiology. Am Physiol Soc, Bethesda, pp 409–480

    Google Scholar 

  • Karasov WH, Solberg DH, Chang SD, Hughes M, Stein ED, Diamond JM (1985) Is intestinal transport of sugars and amino acids subject to critical-period programming? Am J Physiol 249:G770–G785

    CAS  PubMed  Google Scholar 

  • Karasov WH, Martínez del Rio C, Caviedes-Vidal E (2011) Ecological physiology of diet and digestive systems. Annu Rev Physiol 73:69–93. doi:10.1146/annurev-physiol-012110-142152

    Article  CAS  PubMed  Google Scholar 

  • Kasper CS, White MR, Brown PB (2000) Choline is required by tilapia when methionine is not in excess. J Nutr 130:238–242

    CAS  PubMed  Google Scholar 

  • Kassahn KS, Dang VT, Wilkins SJ, Perkins AC, Ragan MA (2009) Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates. Genome Res 19:1404–1418. doi:10.1101/gr.086827.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy DJ, Leibach FH, Ganapathy V, Thwaites DT (2002) Optimal absorptive transport of the dipeptide glycylsarcosine is dependent on functional Na+/H+ exchange activity. Pflugers Arch 445:139–146. doi:10.1007/s00424-002-0910-1

    Article  CAS  PubMed  Google Scholar 

  • Kiela PR, Hines ER, Collins JF, Ghishan FK (2001) Regulation of the rat NHE3 gene promoter by sodium butyrate. Am J Physiol Gastrointest Liver Physiol 281:G947–G956

    CAS  PubMed  Google Scholar 

  • Kiela PR, Kuscuoglu N, Midura AJ, Midura-Kiela MT, Larmonier CB, Lipko M, Ghishan FK (2007) Molecular mechanism of rat NHE3 gene promoter regulation by sodium butyrate. Am J Physiol Cell Physiol 293:C64–C74. doi:10.1152/ajpcell.00277.2006

    Article  CAS  PubMed  Google Scholar 

  • Kim SS, Lee KJ (2013) Comparison of leucine requirement in olive flounder (Paralichthys olivaceus) by free or synthetic dipeptide forms of leucine. Anim Feed Sci Technol 183:195–201. doi:10.1016/j.anifeedsci.2013.05.008

    Article  CAS  Google Scholar 

  • Kim HR, Park SW, Cho HJ, Chae KA, Sung JM, Kim JS, Landowski CP, Sun D, Abd El-Aty AM, Amidon GL, Shin HC (2007) Comparative gene expression profiles of intestinal transporters in mice, rats and humans. Pharmacol Res 56:224–236. doi:10.1016/j.phrs.2007.06.005

    Article  CAS  PubMed  Google Scholar 

  • Kim SS, Rahimnejad S, Song JW, Lee KJ (2012) Comparison of growth performance and whole-body amino acid composition in red seabream (Pagrus major) fed free or dipeptide form of phenylalanine. Asian-Aust J Anim Sci 25:1138–1144. doi:10.5713/ajas.2012.12054

    Article  CAS  Google Scholar 

  • Knütter I, Wollesky C, Kottra G, Hahn MG, Fischer W, Zebisch K, Neubert RH, Daniel H, Brandsch M (2008) Transport of angiotensin-converting enzyme inhibitors by H+/peptide transporters revisited. J Pharmacol Exp Ther 327:432–441. doi:10.1124/jpet.108.143339

    Article  PubMed  CAS  Google Scholar 

  • Kolodziejczak D, Spanier B, Pais R, Kraiczy J, Stelzl T, Gedrich K, Scherling C, Zietek T, Daniel H (2013) Mice lacking the intestinal peptide transporter display reduced energy intake and a subtle maldigestion/malabsorption that protects them from diet-induced obesity. Am J Physiol Gastrointest Liver Physiol 304:G897–G907. doi:10.1152/ajpgi.00160.2012

    Article  CAS  PubMed  Google Scholar 

  • Kottra G, Daniel H (2001) Bidirectional electrogenic transport of peptides by the proton-coupled carrier PEPT1 in Xenopus laevis oocytes: its asymmetry and symmetry. J Physiol 536:495–503. doi:10.1111/j.1469-7793.2001.0495c.xd

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kottra G, Stamfort A, Daniel H (2002) PEPT1 as a paradigm for membrane carriers that mediate electrogenic bidirectional transport of anionic, cationic, and neutral substrates. J Biol Chem 277:32683–32691. doi:10.1074/jbc.M204192200

    Article  CAS  PubMed  Google Scholar 

  • Kottra G, Frey I, Daniel H (2009) Inhibition of intracellular dipeptide hydrolysis uncovers large outward transport currents of the peptide transporter PEPT1 in Xenopus oocytes. Pflugers Arch 457:809–820. doi:10.1007/s00424-008-0562-x

    Article  CAS  PubMed  Google Scholar 

  • Kottra G, Spanier B, Verri T, Daniel H (2013) Peptide transporter isoforms are discriminated by the fluorophore-conjugated dipeptides β-Ala- and d-Ala–Lys-N-7-amino-4-methylcoumarin-3-acetic acid. Physiol Rep 1:e00165. doi:10.1002/phy2.165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kotzamanis YP, Gisbert E, Gatesoupe FJ, Zambonino-Infante J, Cahu C (2007) effects of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut microbiota, and resistance to Vibrio anguillarum in European sea bass (Dicentrarchus labrax) larvae. Comp Biochem Physiol A Mol Integr Physiol 147:205–214. doi:10.1016/j.cbpa.2006.12.037

    Article  CAS  PubMed  Google Scholar 

  • Kousoulaki K, Saether BS, Albrektsen S, Noble C (2015) Review on European sea bass (Dicentrarchus labrax, Linnaeus, 1758) nutrition and feed management: a practical guide for optimizing feed formulation and farming protocols. Aquacult Nutr 21:129–151. doi:10.1111/anu.12233

    Article  Google Scholar 

  • Koven W, Schulte P (2012) The effect of fasting and refeeding on mRNA expression of PepT1 and gastrointestinal hormones regulating digestion and food intake in zebrafish (Danio rerio). Fish Physiol Biochem 38:1565–1575. doi:10.1007/s10695-012-9649-6

    Article  CAS  PubMed  Google Scholar 

  • Kristiansen HR, Rankin JC (2001) Discrimination between endogeneous and exogeneus water sources in juvenile rainbow trout fed extruded dry feed. Aquat Living Resour 14:359–366. doi:10.1016/S0990-7440(01)01131-7

    Article  Google Scholar 

  • Kuang SY, Xiao WW, Feng L, Liu Y, Jiang J, Jiang WD, Hu K, Li SH, Tang L, Zhou XQ (2012) Effects of graded levels of dietary methionine hydroxy analogue on immune response and antioxidant status of immune organs in juvenile Jian carp (Cyprinus carpio var. Jian). Fish Shellfish Immunol 32:629–636. doi:10.1016/j.fsi.2011.12.012

  • Kudo M, Katayoshi T, Kobayashi-Nakamura K, Akagawa M, Tsuji-Naito K (2016) H+/peptide transporter (PEPT2) is expressed in human epidermal keratinocytes and is involved in skin oligopeptide transport. Biochem Biophys Res Commun 475:335–341. doi:10.1016/j.bbrc.2016.05.093

    Article  CAS  PubMed  Google Scholar 

  • Kudsk KA (2007) Beneficial effect of enteral feeding. Gastrointest Endoscopy Clin North Am 17:647–662. doi:10.1016/j.giec.2007.07.003

    Article  Google Scholar 

  • Kukk S, Stepanov V, Järv J (2015) Thermal stability of dopamine transporters. J Membr Biol 248:775–781. doi:10.1007/s00232-015-9794-9

    Article  CAS  PubMed  Google Scholar 

  • Kültz D (2015) Physiological mechanisms used by fish to cope with salinity stress. J Exp Biol 218:1907–1914. doi:10.1242/jeb.118695

    Article  PubMed  Google Scholar 

  • Küpers LK, L’Abée C, Bocca G, Stolk RP, Sauer PJ, Corpeleijn E (2015) Determinants of weight gain during the first two years of life: the GECKO Drenthe birth cohort. PLoS One 10:e0133326. doi:10.1371/journal.pone.0133326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurita Y, Nakada T, Kato A, Doi H, Mistry AC, Chang MH, Romero MF, Hirose S (2008) Identification of intestinal bicarbonate transporters involved in formation of carbonate precipitates to stimulate water absorption in marine teleost fish. Am J Physiol Regul Integr Comp Physiol 294:R1402-R1412. doi: 10.1152/ajpregu.00759.2007

  • Kuzmina VV, Zhivaev NG, Botjazhova OA (2008) The biochemical composition of chyme in fish species with different diets. Inland Water Biol 1:282–286. doi:10.1134/S1995082908030127

    Article  Google Scholar 

  • Kwasek K, Zhang Y, Hliwa P, Gomulka P, Ostaszewska T, Dabrowski K (2009) Free amino acids as indicators of nutritional status of silver bream (Vimba vimba), when using commercial and purified diets. Comp Biochem Physiol A Mol Integr Physiol 153:113–119. doi:10.1016/j.cbpa.2009.01.003

    Article  PubMed  CAS  Google Scholar 

  • Kwasek K, Zhang Y, Dabrowski K (2010) Utilization of dipeptide/protein based diets in larval and juvenile Koi carp: post-prandial free amino acid levels. J Anim Physiol Anim Nutr 94:35–43. doi:10.1111/j.1439-0396.2008.00877.x

    Article  CAS  Google Scholar 

  • Kwasek K, Terova G, Wojno M, Dabrowski K, Wick M (2012) The effect of dietary dipeptide lysine-glycine on growth, muscle proteins, and intestine PepT1 gene expression in juvenile yellow perch. Rev Fish Biol Fisheries 22:797–812. doi:10.1007/s11160-012-9266-6

    Article  Google Scholar 

  • Laranjeiro R, Whitmore D (2014) Transcription factors involved in retinogenesis are co-opted by the circadian clock following photoreceptor differentiation. Development 141:2644–2656. doi:10.1242/dev.104380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen EH, Deaton LE, Onken H, O’Donnell M, Grosell M, Dantzler WH, Weihrauch D (2014) Osmoregulation and excretion. Compr Physiol 4:405–573. doi:10.1002/cphy.c130004

    Article  PubMed  Google Scholar 

  • Laverty G, Skadhauge E (2012) Adaptation of teleosts to very high salinity. Comp Biochem Physiol A Mol Integr Physiol 163:1–6. doi:10.1016/j.cbpa.2012.05.203

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Tattoli I, Wojtal KA, Vavricka SR, Philpott DJ, Girardin SE (2009) pH-dependent internalization of muramyl peptides from early endosomes enables Nod1 and Nod2 signaling. J Biol Chem 284:23818–23829. doi:10.1074/jbc.M109.033670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Gilbert ER, Zhang Y, Crasta O, Emmerson D, Webb KE Jr, Wong EA (2008) Expression profiling of the solute carrier gene family in chicken intestine from the late embryonic to early post-hatch stages. Anim Genet 39:407–424. doi:10.1111/j.1365-2052.2008.01744.x

    Article  CAS  PubMed  Google Scholar 

  • Li P, Mai K, Trushenski J, Wu G (2009) New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids 37:43–53. doi:10.1007/s00726-008-0171-1

    Article  PubMed  CAS  Google Scholar 

  • Li IC, Chan CT, Lu YF, Wu YT, Chen YC, Li GB, Lin CY, Hwang SP (2011a) Zebrafish krüppel-like factor 4a represses intestinal cell proliferation and promotes differentiation of intestinal cell lineages. PLoS ONE 6:e20974. doi:10.1371/journal.pone.0020974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Xiong H, Yang K, Peng D, Li W, Yin Y, Liu J (2011b) Effects of rice dreg protein and its hydrolysate on growth performance and small intestine morphology of early-weaned rats. J Sci Food Agric 91:687–693. doi:10.1002/jsfa.4237

    Article  CAS  PubMed  Google Scholar 

  • Li XY, Tang L, Hu K, Liu Y, Jiang WD, Jiang J, Wu P, Chen GF, Li SH, Kuang SY, Feng L, Zhou XQ (2014) Effect of dietary lysine on growth, intestinal enzymes activities and antioxidant status of sub-adult grass carp (Ctenopharyngodon idella). Fish Physiol Biochem 40:659–671. doi:10.1007/s10695-013-9874-7

    Article  CAS  PubMed  Google Scholar 

  • Li M, Li C, Song S, Zhao F, Xu X, Zhou G (2016) Meat proteins had different effects on oligopeptide transporter PEPT1 in the small intestine of young rats. Int J Food Sci Nutr. doi:10.1080/09637486.2016.1210574

    Google Scholar 

  • Lim CE, Webster CD, Lee CS (2008) Alternative protein sources in aquaculture diets. Haworth Press, New York

    Google Scholar 

  • Liou AP, Chavez DI, Espero E, Hao S, Wank SA, Raybould HE (2011) Protein hydrolysate-induced cholecystokinin secretion from enteroendocrine cells is indirectly mediated by the intestinal oligopeptide transporter PepT1. Am J Physiol Gastrointest Liver Physiol 300:G895–G902. doi:10.1152/ajpgi.00521.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Li C, Su B, Beck BH, Peatman E (2013a) Short-term feed deprivation alters immune status of surface mucosa in channel catfish (Ictalurus punctatus). PLoS ONE 8:e74581. doi:10.1371/journal.pone.0074581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Zhou Y, Feng J, Lu S, Zhao Q, Zhang J (2013b) Characterization of oligopeptide transporter (PepT1) in grass carp (Ctenopharyngodon idella). Comp Biochem Physiol B: Biochem Mol Biol 164:194–200. doi:10.1016/j.cbpb.2012.11.008

    Article  CAS  Google Scholar 

  • Liu Z, Zhou Y, Liu S, Zhao Q, Feng J, Lu S, Xiong G, Xie D, Zhang J, Liu Y (2014) Characterization and dietary regulation of oligopeptide transporter (PepT1) in different ploidy fishes. Peptides 52:149–156. doi:10.1016/j.peptides.2013.12.017

    Article  CAS  PubMed  Google Scholar 

  • Lucas ML, Schneider W, Haberich FJ, Blair JA (1975) Direct measurement by pH-microelectrode of the pH microclimate in rat proximal jejunum. Proc R Soc Lond B Biol Sci 192:39–48. doi:10.1098/rspb.1975.0150

    Article  CAS  PubMed  Google Scholar 

  • Luo Z, Liu Y, Mai K, Tian L, Yang H, Liu D (2005) Dietary l-methionine requirement of juvenile grouper Epinephelus coioides at a constant dietary cystine level. Aquaculture 249:409–418. doi:10.1016/j.aquaculture.2005.04.030

    Article  CAS  Google Scholar 

  • Lyons JA, Parker JL, Solcan N, Brinth A, Li D, Shah ST, Caffrey M, Newstead S (2014) Structural basis for polyspecificity in the POT family of proton-coupled oligopeptide transporters. EMBO Rep 15:886–893. doi:10.15252/embr.201338403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma K, Hu Y, Smith DE (2012) Influence of fed-fasted state on intestinal PEPT1 expression and in vivo pharmacokinetics of glycylsarcosine in wild-type and Pept1 knockout mice. Pharm Res 29:535–545. doi:10.1007/s11095-011-0580-9

    Article  CAS  PubMed  Google Scholar 

  • Ma R, Hou H, Mai K, Bharadwaj AS, Cao H, Ji F, Zhang W (2013) Comparative study on the effects of l-methionine or 2-hydroxy-4-(methylthio) butanoic acid as dietary methionine source on growth performance and anti-oxidative responses of turbot (Psetta maxima). Aquaculture 412:136–143. doi:10.1016/j.aquaculture.2013.07.021

    Article  CAS  Google Scholar 

  • Ma G, Shi B, Liu J, Zhang H, YinTao Z, Lou X, Liang D, Hou Y, Wan S, Yang W (2015) Nod2-Rip2 signaling contributes to intestinal injury induced by muramyl dipeptide via oligopeptide transporter in rats. Dig Dis Sci 60:3264–3270. doi:10.1007/s10620-015-3762-1

    Article  CAS  PubMed  Google Scholar 

  • Mace OJ, Lister N, Morgan E, Shepherd E, Affleck J, Helliwell P, Bronk JR, Kellett GL, Meredith D, Boyd R, Pieri M, Bailey PD, Pettcrew R, Foley D (2009) An energy supply network of nutrient absorption coordinated by calcium and T1R taste receptors in rat small intestine. J Physiol 587:195–210. doi:10.1113/jphysiol.2008.159616

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie B, Loo DDF, Fei YJ, Liu W, Ganapathy V, Leibach FH, Wright EM (1996) Mechanisms of the human intestinal H+-coupled oligopeptide transporter hPEPT1. J Biol Chem 271:5430–5437. doi:10.1074/jbc.271.10.5430

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie DS, Van Putte CM, Leiner KA (1998) Nutrient regulation of endocrine function in fish. Aquaculture 161:3–25. doi:10.1016/S0044-8486(97)00253-6

    Article  CAS  Google Scholar 

  • Mackenzie B, Takanaga H, Hubert N, Rolfs A, Hediger MA (2007) Functional properties of multiple isoforms of human divalent metal-ion transporter 1 (DMT1). Biochem J 403:59–69. doi:10.1042/BJ20061290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen SL, Wong EA (2011) Expression of the chicken peptide transporter 1 and the peroxisome proliferator-activated receptor α following feed restriction and subsequent refeeding. Poult Sci 90:2295–2300. doi:10.3382/ps.2010-01173

    Article  CAS  PubMed  Google Scholar 

  • Maffia M, Acierno R, Cillo E, Storelli C (1996) Na+-d-glucose cotransport by intestinal BBMVs of the Antarctic fish Trematomus bernacchii. Am J Physiol 271:R1576–R1583

    CAS  PubMed  Google Scholar 

  • Maffia M, Verri T, Danieli A, Thamotharan M, Pastore M, Ahearn GA, Storelli C (1997) H+-glycyl-l-proline cotransport in brush-border membrane vesicles of eel (Anguilla anguilla) intestine. Am J Physiol 272:R217–R225

    CAS  PubMed  Google Scholar 

  • Maffia M, Rizzello A, Acierno R, Verri T, Rollo M, Danieli A, Döring F, Daniel H, Storelli C (2003) Characterisation of intestinal peptide transporter of the Antarctic haemoglobinless teleost Chionodraco hamatus. J Exp Biol 206:705–714. doi:10.1242/jeb.00145

    Article  CAS  PubMed  Google Scholar 

  • Mai K, Wan J, Ai Q, Xu W, Liufu Z, Zhang L, Zhang C, Li H (2006a) Dietary methionine requirement of large yellow croaker, Pseudosciaena crocea R. Aquaculture 253:564–572. doi:10.1016/j.aquaculture.2005.08.010

    Article  CAS  Google Scholar 

  • Mai K, Zhang L, Ai Q, Duan Q, Zhang C, Li H, Wan J, Liufu Z (2006b) Dietary lysine requirement of juvenile Japanese seabass, Lateolabrax japonicus. Aquaculture 258:535–542. doi:10.1016/j.aquaculture.2006.04.043

    Article  CAS  Google Scholar 

  • Mamauag REP, Gao J, Nguyen BT, Ragaza JA, Koshio S, Ishikawa M, Yokoyama S (2012) Supplementations of dl-methionine and methionine dipeptide in diets are effective for the development and growth of larvae and juvenile red sea bream, Pagrus major. J World Aquacult Soc 43:362–374. doi:10.1111/j.1749-7345.2012.00563.x

    Article  Google Scholar 

  • Manzanilla EG, Nofrarías M, Anguita M, Castillo M, Perez JF, Martín-Orúe SM, Kamel C, Gasa J (2006) Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs. J Anim Sci 84:2743–2751. doi:10.2527/jas.2005-509

    Article  CAS  PubMed  Google Scholar 

  • Marasco WA, Phan SH, Krutzsch H, Showell HJ, Feltner DE, Nairn R, Becker EL, Ward PA (1984) Purification and identification of formyl-methionyl-leucy l-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J Biol Chem 259:5430–5439

    CAS  PubMed  Google Scholar 

  • Margheritis E, Terova G, Cinquetti R, Peres A, Bossi E (2013a) Functional properties of a newly cloned fish ortholog of the neutral amino acid transporter B0AT1 (SLC6A19). Comp Biochem Physiol A: Mol Integr Physiol 166:285–292. doi:10.1016/j.cbpa.2013.06.027

    Article  CAS  Google Scholar 

  • Margheritis E, Terova G, Oyadeyi AS, Renna MD, Cinquetti R, Peres A, Bossi E (2013b) Characterization of the transport of lysine-containing dipeptides by PepT1 orthologs expressed in Xenopus laevis oocytes. Comp Biochem Physiol A Mol Integr Physiol 164:520–528. doi:10.1016/j.cbpa.2012.12.016

    Article  CAS  PubMed  Google Scholar 

  • Markovich D (2008) Expression cloning and radiotracer uptakes in Xenopus laevis oocytes. Nat Protoc 3:1975–1980. doi:10.1038/nprot.2008.151

    Article  CAS  PubMed  Google Scholar 

  • Marshall C, Elias C, Xue XH, Le HD, Omelchenko A, Hryshko LV, Tibbits GF (2002) Determinants of cardiac Na+/Ca2+ exchanger temperature dependence: NH2-terminal transmembrane segments. Am J Physiol Cell Physiol 283:C512–C520. doi:10.1152/ajpcell.00558.2001

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Alvarez O, Chamorro S, Brenes A (2015) Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: a review. Food Res Int 73:204–212. doi:10.1016/j.foodres.2015.04.005

    Article  CAS  Google Scholar 

  • McCue MD (2010) Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A: Mol Integr Physiol 156:1–18. doi:10.1016/j.cbpa.2010.01.002

    Article  CAS  Google Scholar 

  • McCue MD (2012) Comparative physiology of fasting, starvation and food limitation. Spinger-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  • McIntyre A, Gibson PR, Young GP (1993) Butyrate production from dietary fibre and protection against large bowel cancer in a rat model. Gut 34:386–391. doi:10.1136/gut.34.3.386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMillan DN, Houlihan DF (1989) Short-term responses of protein synthesis to re-feeding in rainbow trout. Aquaculture 79:37–46. doi:10.1016/0044-8486(89)90443-2

    Article  CAS  Google Scholar 

  • McNurlan MA, Garlick PJ (1981) Protein synthesis in liver and small intestine in protein deprivation and diabetes. Am J Physiol 241:E238–E245

    CAS  PubMed  Google Scholar 

  • Meier Y, Eloranta JJ, Darimont J, Ismair MG, Hiller C, Fried M, Kullak-Ublick GA, Vavricka SR (2007) Regional distribution of solute carrier mRNA expression along the human intestinal tract. Drug Metab Dispos 35:590–594. doi:10.1124/dmd.106.013342

    Article  CAS  PubMed  Google Scholar 

  • Meissner B, Boll M, Daniel H, Baumeister R (2004) Deletion of the intestinal peptide transporter affects insulin and TOR signalling in Caenorhabditis elegans. J Biol Chem 279:36739–36745. doi:10.1074/jbc.M403415200

    Article  CAS  PubMed  Google Scholar 

  • Meredith D (2009) Review. The mammalian proton-coupled peptide cotransporter PepT1: sitting on the transporter-channel fence? Philos Trans R Soc Lond B Biol Sci 364:203–207. doi:10.1098/rstb.2008.0139

    Article  CAS  PubMed  Google Scholar 

  • Meredith D, Price RA (2006) Molecular modelling of PepT1: towards a structure. J Membr Biol 213:79–88. doi:10.1007/s00232-006-0876-6

    Article  CAS  PubMed  Google Scholar 

  • Mertl M, Daniel H, Kottra G (2008) Substrate-induced changes in the density of peptide transporter PEPT1 expressed in Xenopus oocytes. Am J Physiol Cell Physiol 295:C1332–C1343. doi:10.1152/ajpcell.00241.2008

    Article  CAS  PubMed  Google Scholar 

  • Miska KB, Fetterer RH, Wong EA (2014) The mRNA expression of amino acid transporters, aminopeptidase N, and the di- and tri-peptide transporter PepT1 in the embryo of the domesticated chicken (Gallus gallus) shows developmental regulation. Poult Sci 93:2262–2270. doi:10.3382/ps.2014-03983

    Article  CAS  PubMed  Google Scholar 

  • Miska KB, Fetterer RH, Wong EA (2015) mRNA expression of amino acid transporters, aminopeptidase, and the di- and tri-peptide transporter PepT1 in the intestine and liver of posthatch broiler chicks. Poult Sci 94:1323–1332. doi:10.3382/ps/pev059

    Article  PubMed  Google Scholar 

  • Miyamoto K, Shiraga T, Morita K, Yamamoto H, Haga H, Taketani Y, Tamai I, Sai Y, Tsuji A, Takeda E (1996) Sequence, tissue distribution and developmental changes in rat intestinal oligopeptide transporter. Biochim Biophys Acta 1305:34–38. doi:10.1016/0167-4781(95)00208-1

    Article  PubMed  Google Scholar 

  • Mizumori M, Meyerowitz J, Takeuchi T, Lim S, Lee P, Supuran CT, Guth PH, Engel E, Kaunitz JD, Akiba Y (2006) Epithelial carbonic anhydrases facilitate PCO2 and pH regulation in rat duodenal mucosa. J Physiol 573:827–842. doi:10.1113/jphysiol.2006.107581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mommsen TP (2001) Paradigms of growth in fish. Comp Biochem Physiol B Biochem Mol Biol 129:207–219. doi:10.1016/S1096-4959(01)00312-8

    Article  CAS  PubMed  Google Scholar 

  • Montserrat N, Gabillard JC, Capilla E, Navarro MI, Gutiérrez J (2007a) Role of insulin, insulin-like growth factors, and muscle regulatory factors in the compensatory growth of the trout (Oncorhynchus mykiss). Gen Comp Endocrinol 150(3):462–472. doi:10.1016/j.ygcen.2006.11.009

    Article  CAS  PubMed  Google Scholar 

  • Montserrat N, Gómez-Requeni P, Bellini G, Capilla E, Pérez-Sánchez J, Navarro I, Gutiérrez J (2007b) Distinct role of insulin and IGF-I and its receptors in white skeletal muscle during compensatory growth of gilthead sea bream (Sparus aurata). Aquaculture 267:188–198. doi:10.1016/j.aquaculture.2007.04.024

    Article  CAS  Google Scholar 

  • Mooij MG, de Koning BE, Lindenbergh-Kortleve DJ, Simons-Oosterhuis Y, van Groen BD, Tibboel D, Samsom JN, de Wildt SN (2016) Human intestinal PEPT1 transporter expression and localization in preterm and term infants. Drug Metab Dispos 44:1014–1019. doi:10.1124/dmd.115.068809

    Article  CAS  PubMed  Google Scholar 

  • Moran AW, Al-Rammahi MA, Arora DK, Batchelor DJ, Coulter EA, Ionescu C, Bravo D, Shirazi-Beechey SP (2010) Expression of Na+/glucose co-transporter 1 (SGLT1) in the intestine of piglets weaned to different concentrations of dietary carbohydrate. Br J Nutr 104:647–655. doi:10.1017/S0007114510000954

    Article  CAS  PubMed  Google Scholar 

  • Moreau A, Le Vee M, Jouan E, Parmentier Y, Fardel O (2011) Drug transporter expression in human macrophages. Fundam Clin Pharmacol 25:743–752. doi:10.1111/j.1472-8206.2010.00913.x

    Article  CAS  PubMed  Google Scholar 

  • Morrison CD, Laeger T (2015) Protein-dependent regulation of feeding and metabolism. Trends Endocrinol Metab 26:256–262. doi:10.1016/j.tem.2015.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison CD, Reed SD, Henagan TM (2011) Homeostatic regulation of protein intake: in search of a mechanism. Am J Physiol Regul Integr Comp Physiol 302:R917–R928. doi:10.1152/ajpregu.00609.2011

    Article  CAS  Google Scholar 

  • Mourad FH, Saadé NE (2011) Neural regulation of intestinal nutrient absorption. Prog Neurobiol 95:149–162. doi:10.1016/j.pneurobio.2011.07.010

    Article  CAS  PubMed  Google Scholar 

  • Mueller CA, Eme J, Burggren WW, Roghair RD, Rundle SD (2015) Challenges and opportunities in developmental integrative physiology. Comp Biochem Physiol A: Mol Integr Physiol 184:113–124. doi:10.1016/j.cbpa.2015.02.013

    Article  CAS  Google Scholar 

  • Nakajima M, Sugiura S (2016) Effects of dietary NaCl on the in vivo apparent absorption of dietary nutrients determined in rainbow trout (Oncorhynchus mykiss). Aquaculture 460:1–7. doi:10.1016/j.aquaculture.2016.04.003

    Article  CAS  Google Scholar 

  • Nakajima S, Hira T, Hara H (2012) Calcium-sensing receptor mediates dietary peptide-induced CCK secretion in enteroendocrine STC-1 cells. Mol Nutr Food Res 56:753–760. doi:10.1002/mnfr.201100666

    Article  CAS  PubMed  Google Scholar 

  • Nalbant P, Boehmer C, Dehmelt L, Wehner F, Werner A (1999) Functional characterization of a Na+-phosphate cotransporter (NaPi-II) from zebrafish and identification of related transcripts. J Physiol 520:79–89. doi:10.1111/j.1469-7793.1999.00079.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naruhashi K, Sai Y, Tamai I, Suzuki N, Tsuji A (2002) PepT1 mRNA expression is induced by starvation and its level correlates with absorptive transport of cefadroxil longitudinally in the rat intestine. Pharm Res 19:1417–1423. doi:10.1023/A:1020436028194

    Article  CAS  PubMed  Google Scholar 

  • Nässl AM, Rubio-Aliaga I, Fenselau H, Marth MK, Kottra G, Daniel H (2011a) Amino acid absorption and homeostasis in mice lacking the intestinal peptide transporter PEPT1. Am J Physiol Gastrointest Liver Physiol 301:G128–G137. doi:10.1152/ajpgi.00017.2011

    Article  PubMed  CAS  Google Scholar 

  • Nässl AM, Rubio-Aliaga I, Sailer M, Daniel H (2011b) The intestinal peptide transporter PEPT1 is involved in food intake regulation in mice fed a high-protein diet. PLoS ONE 6:e26407. doi:10.1371/journal.pone.0026407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • National Research Council (2011) Nutrient requirements of fish and shrimp. The National Academic Press, Washington

    Google Scholar 

  • Naya DE, Bozinovic F (2006) The role of ecological interactions on the physiological flexibility of lizards. Funct Ecol 20:601–608. doi:10.1111/j.1365-2435.2006.01137.x

    Article  Google Scholar 

  • Near TJ, Dornburg A, Kuhn KL, Eastman JT, Pennington JN, Patarnello T, Zane L, Fernández DA, Jones CD (2012a) Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc Natl Acad Sci USA 109:3434–3439. doi:10.1073/pnas.1115169109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, Davis MP, Wainwright PC, Friedman M, Smith WL (2012b) Resolution of ray-finned fish phylogeny and timing of diversification. Proc Natl Acad Sci USA 109:13698–13703. doi:10.1073/pnas.1206625109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson JS (2006) Fishes of the world. John Wiley and Sons, New York

    Google Scholar 

  • Newstead S (2011) Towards a structural understanding of drug and peptide transport within the proton-dependent oligopeptide transporter (POT) family. Biochem Soc Trans 39:1353–1358. doi:10.1042/BST0391353

    Article  CAS  PubMed  Google Scholar 

  • Newstead S (2015) Molecular insights into proton coupled peptide transport in the PTR family of oligopeptide transporters. Biochim Biophys Acta 1850:488–499. doi:10.1016/j.bbagen.2014.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newstead S, Drew D, Cameron AD, Postis VL, Xia X, Fowler PW, Ingram JC, Carpenter EP, Sansom MS, McPherson MJ, Baldwin SA, Iwata S (2011) Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2. EMBO J 30:417–426. doi:10.1038/emboj.2010.309

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TN, Davis DA (2009) Methionine requirement in practical diets of juvenile Nile tilapia, Oreochromis niloticus. J World Aquacult Soc 40:410–416. doi:10.1111/j.1749-7345.2009.00261.x

    Article  Google Scholar 

  • Nguyen TV, Smith DE, Fleisher D (2007) PEPT1 enhances the uptake of gabapentin via trans-stimulation of b0,+ exchange. Pharm Res 24:353–360. doi:10.1007/s11095-006-9155-6

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TV, Jung H, Nguyen TM, Hurwood D, Mather P (2016) Evaluation of potential candidate genes involved in salinity tolerance in striped catfish (Pangasianodon hypophthalmus) using an RNA-Seq approach. Mar Genomics 25:75–88. doi:10.1016/j.margen.2015.11.010

    Article  PubMed  Google Scholar 

  • Nie GX, Yan X, Wang JL, Ming H, Wang B, Zheng JL, Li XJ, Kong XH (2012) Peptide transporter Pept1 in Cyprinus carpio L’.s intestine: cDNA cloning and sequence analysis. Turk J Biochem 37:204–211. doi:10.5505/tjb.2012.95914

    Article  CAS  Google Scholar 

  • Nielsen CU, Brodin B (2003) Di/tri-peptide transporters as drug delivery targets: regulation of transport under physiological and patho-physiological conditions. Curr Drug Targets 4:373–388. doi:10.2174/1389450033491028

    Article  CAS  PubMed  Google Scholar 

  • Nitzan T, Rozenberg P, Cnaani A (2016) Differential expression of amino-acid transporters along the intestine of Mozambique tilapia (Oreochromis mossambicus) and the effect of water salinity and time after feeding. Aquaculture. doi:10.1016/j.aquaculture.2016.01.020

    Google Scholar 

  • Nosworthy MG, Bertolo RF, Brunton JA (2013) Ontogeny of dipeptide uptake and peptide transporter 1 (PepT1) expression along the gastrointestinal tract in the neonatal Yucatan miniature pig. Br J Nutr 110:275–281. doi:10.1017/S0007114512005041

    Article  CAS  PubMed  Google Scholar 

  • Nunes AJP, Sà MVC, Browdy CL, Vazquez-Anon M (2014) Practical supplementation of shrimp and fish feeds with crystalline amino acids. Aquaculture 431:20–27. doi:10.1016/j.aquaculture.2014.04.003

    Article  CAS  Google Scholar 

  • Nussberger S, Steel A, Trotti D, Romero MF, Boron WF, Hediger MA (1997) Symmetry of H+ binding to the intra- and extracellular side of the H+-coupled oligopeptide cotransporter PepT1. J Biol Chem 272:7777–7785. doi:10.1074/jbc.272.12.7777

    Article  CAS  PubMed  Google Scholar 

  • Nyman L (1972) Some effects of temperature on eel (Anguilla) behaviour. Inst Freshwater Res 52:90–102

    Google Scholar 

  • O’Connor KI, Taylor AC, Metcalfe NB (2000) The stability of standard metabolic rate during a period of food deprivation in juvenile Atlantic salmon. J Fish Biol 57:41–51. doi:10.1111/j.1095-8649.2000.tb00774.x

    Article  Google Scholar 

  • Ocheltree SM, Keep RF, Shen H, Yang D, Hughes BA, Smith DE (2003) Preliminary investigation into the expression of proton-coupled oligopeptide transporters in neural retina and retinal pigment epithelium (RPE): lack of functional activity in RPE plasma membranes. Pharm Res 20:1364–1372. doi:10.1023/A:1025741723724

    Article  CAS  PubMed  Google Scholar 

  • Ogihara H, Suzuki T, Nagamachi Y, Inui K, Takata K (1999) Peptide transporter in the rat small intestine: ultrastructural localization and the effect of starvation and administration of amino acids. Histochem J 31:169–174. doi:10.1023/A:1003515413550

    Article  CAS  PubMed  Google Scholar 

  • Okamura A, Koyanagi S, Dilxiat A, Kusunose N, Chen JJ, Matsunaga N, Shibata S, Ohdo S (2014) Bile acid-regulated peroxisome proliferator-activated receptor-α (PPARα) activity underlies circadian expression of intestinal peptide absorption transporter PepT1/Slc15a1. J Biol Chem 289:25296–25305. doi:10.1074/jbc.M114.577023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliva-Teles A, Cerqueira AL, Gonçalves P (1999) The utilization of diets containing high levels of fish protein hydrolysate by turbot (Scophthalmus maximus) juveniles. Aquaculture 179:195–201. doi:10.1016/S0044-8486(99)00162-3

    Article  Google Scholar 

  • Önal U, Langdon C (2008) Çelik I (2008) Ontogeny of the digestive tract of larval percula clownfish, Amphiprion percula (Lacépède 1802): a histological perspective. Aquac Res 39:1077–1086. doi:10.1111/j.1365-2109.2008.01968.x

    Article  Google Scholar 

  • Opheim M, Sterten H, Øverland M, Kjos NP (2016) Atlantic salmon (Salmo salar) protein hydrolysate: effect on growth performance and intestinal morphometry in broiler chickens. Livest Sci 187:138–145. doi:10.1016/j.livsci.2016.03.005

    Article  Google Scholar 

  • Ostaszewska T, Dabrowski K, Hliwa P, Gomolka P, Kwasek K (2008a) Nutritional regulation of intestine morphology in larval cyprinid fish, silver bream (Vimba vimba). Aquacult Nutr 39:1268–1278. doi:10.1111/j.1365-2109.2008.01989.x

    Article  Google Scholar 

  • Ostaszewska T, Dabrowski K, Wegner A, Krawiec M (2008b) The effects of feeding on muscle growth dynamics and the proliferation of myogenic progenitor cells during pike perch development (Sander lucioperca). J World Aquacult Soc 39:184–195. doi:10.1111/j.1749-7345.2008.00151.x

    Article  Google Scholar 

  • Ostaszewska T, Dabrowski K, Kamaszewski M, Grochowski P, Verri T, Rzepkowska M, Wolnicki J (2010a) The effect of plant protein-based diet supplemented with dipeptide or free amino acids on digestive tract morphology and PepT1 and PepT2 expressions in common carp (Cyprinus carpio L.). Comp Biochem Physiol A Mol Integr Physiol 157:158–169. doi:10.1016/j.cbpa.2010.06.162

    Article  PubMed  CAS  Google Scholar 

  • Ostaszewska T, Kamaszewski M, Grochowski P, Dabrowski K, Verri T, Aksakal E, Szatkowska I, Nowak Z, Dobosz S (2010b) The effect of peptide absorption on PepT1 gene expression and digestive system hormones in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A: Mol Integr Physiol 155:107–114. doi:10.1016/j.cbpa.2009.10.017

    Article  CAS  Google Scholar 

  • Ostaszewska T, Dabrowski K, Kamaszewski M, Kwasek K, Grodzik M, Bierla J (2013) The effect of dipeptide, Lys–Gly, supplemented diets on digestive tract histology in juvenile yellow perch (Perca flavescens). Aquacult Nutr 19:100–109. doi:10.1111/j.1365-2095.2012.00948.x

    Article  CAS  Google Scholar 

  • Ouellet DR, Seoane JR, Veira DM, Proulx JG (1997) Effects of supplementation with fish meal or fish protein hydrolysate on growth, nutrient digestibility and rumen fermentation of growing cattle fed grass silage. Anim Feed Sci Technol 68:307–326. doi:10.1016/S0377-8401(97)00035-7

    Article  Google Scholar 

  • Pacha J (2000) Development of intestinal transport function in mammals. Physiol Rev 80:1633–1667

    CAS  PubMed  Google Scholar 

  • Pacha J, Sumova A (2013) Circadian regulation of epithelial functions in the intestine. Acta Physiol (Oxf) 208:11–24. doi:10.1111/apha.12090

    Article  CAS  Google Scholar 

  • Pan YX, Wong EA, Bloomquist JR, Webb KE Jr (2001) Expression of a cloned ovine gastrointestinal peptide transporter (oPepT1) in Xenopus oocytes induces uptake of oligopeptides in vitro. J Nutr 131:1264–1270

    CAS  PubMed  Google Scholar 

  • Pan X, Terada T, Irie M, Saito H, Inui KI (2002) Diurnal rhythm of H+-peptide cotransporter in rat small intestine. Am J Physiol Gastrointest Liver Physiol 283:G57–G64. doi:10.1152/ajpgi.00545.2001

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Terada T, Okuda M, Inui KI (2003) Altered diurnal rhythm of intestinal peptide transporter by fasting and its effects on the pharmacokinetics of ceftibuten. J Pharmacol Exp Ther 307:626–632. doi:10.1124/jpet.103.055939

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Terada T, Okuda M, Inui KI (2004) The diurnal rhythm of the intestinal transporters SGLT1 and PEPT1 is regulated by the feeding conditions in the rat. J Nutr 134:2211–2215

    CAS  PubMed  Google Scholar 

  • Panitsas KE, Boyd CA, Meredith D (2006) Evidence that the rabbit proton-peptide co-transporter PepT1 is a multimer when expressed in Xenopus laevis oocytes. Pflugers Arch 452:53–63. doi:10.1007/s00424-005-0002-0

    Article  CAS  PubMed  Google Scholar 

  • Parker MD, Boron WF (2013) The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 93:803–959. doi:10.1152/physrev.00023.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker JL, Mindell JA, Newstead S (2014) Thermodynamic evidence for a dual transport mechanism in a POT peptide transporter. Elife 3:e04273. doi:10.7554/eLife.04273

    Article  PubMed Central  Google Scholar 

  • Parks SK, Tresguerres M, Goss GG (2008) Theoretical considerations underlying Na+ uptake mechanisms in freshwater fishes. Comp Biochem Physiol C: Toxicol Pharmacol 148:411–418. doi:10.1016/j.cbpc.2008.03.002

    Google Scholar 

  • Parmelee JT, Renfro JL (1983) Esophageal desalination of seawater in flounder: role of active sodium transport. Am J Physiol 245:R888–R893

    CAS  PubMed  Google Scholar 

  • Pedretti A, De Luca L, Marconi C, Negrisoli G, Aldini G, Vistoli G (2008) Modeling of the intestinal peptide transporter hPepT1 and analysis of its transport capacities by docking and pharmacophore mapping. ChemMedChem 3:1913–1921. doi:10.1002/cmdc.200800184

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Torras S, Iglesias I, Llopis M, Lozano JJ, Antolín M, Guarner F, Pastor-Anglada M (2016) Transportome profiling identifies profound alterations in Crohn’s Disease partially restored by commensal bacteria. J Crohns Colitis 10:850–859. doi:10.1093/ecco-jcc/jjw042

    Article  PubMed  Google Scholar 

  • Perez-Velasquez M, Gonzalez-Felix M, Lawrence AL, Gatlin DM (2003) Changes in lipid class and fatty acid composition of adult male Litopenaeus vannamei (Boone) in response to culture temperature and food deprivation. Aquacult Res 34:1205–1213. doi:10.1046/j.1365-2109.2003.00931.x

    Article  Google Scholar 

  • Phositlimpagul A, Edwards GL, Azain MJ (2002) Hepatic vagotomy disrupts somatotropin-induced protein selection. Physiol Behav 75:193–200. doi:10.1016/S0031-9384(01)00643-6

    Article  CAS  PubMed  Google Scholar 

  • Pieri M, Christian HC, Wilkins RJ, Boyd CA, Meredith D (2010) The apical (hPepT1) and basolateral peptide transport systems of Caco-2 cells are regulated by AMP-activated protein kinase. Am J Physiol Gastrointest Liver Physiol 299:G136–G143. doi:10.1152/ajpgi.00014.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pisani P (2012) Caratterizzazione di un trasportatore funzionalmente orfano della famiglia genica SLC15: il trasportatore SLC15A4(PHT1) (peptide/histidine transporter 1). Dissertation, University of Salento

  • Pohjanpelto P, Holtta E (1990) Deprivation of a single amino acid induces protein synthesis-dependent increase in c-jun, c-myc and ornithine decarboxylase mRNAs in Chinese hamster ovary cells. Mol Cell Biol 10:5814–5821. doi:10.1128/MCB.10.11.5814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole CA, Wong EA, McElroy AP, Veit HP, Webb KE Jr (2003) Ontogenesis of peptide transport and morphological changes in the ovine gastrointestinal tract. Small Rum Res 50:163–176. doi:10.1016/S0921-4488(03)00103-2

    Article  Google Scholar 

  • Pörtner HO, Peck L, Somero G (2007) Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Phil Trans R Soc B Biol Sci 362:2233–2258. doi:10.1098/rstb.2006.1947

    Article  CAS  Google Scholar 

  • Puchal AA, Buddington RK (1992) Postnatal development of monosaccharide transport in pig intestine. Am J Physiol Gastrointest Liver Physiol 262:G895–G902

    CAS  Google Scholar 

  • Qandeel HG, Alonso F, Hernandez DJ, Duenes JA, Zheng Y, Scow JS, Sarr MG (2009a) Role of vagal innervation in diurnal rhythm of intestinal peptide transporter 1 (PEPT1). J Gastrointest Surg 13:1976–1985. doi:10.1007/s11605-009-0984-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Qandeel HG, Duenes JA, Zheng Y, Sarr MG (2009b) Diurnal expression and function of peptide transporter 1 (PEPT1). J Surg Res 156:123–128. doi:10.1016/j.jss.2009.03.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahimnejad S, Lee KJ (2014) Comparison of free and dipeptide lysine utilization in diets for juvenile olive flounder Paralichthys olivaceus. Fish Aquat Sci 17:433–439. doi:10.5657/FAS.2014.0433

    Google Scholar 

  • Ravi V, Venkatesh B (2008) Rapidly evolving fish genomes and teleost diversity. Curr Opin Genet Dev 18:544–550. doi:10.1016/j.gde.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  • Ray AK, Ghosh K, Ringø E (2012) Enzyme-producing bacteria isolated from fish gut: a review. Aquac Nut 18:465–492. doi:10.1111/j.1365-2095.2012.00943.x

    Article  CAS  Google Scholar 

  • Refstie S, Olli JJ, Standal H (2004) Feed intake, growth, and protein utilization by post-smolt Atlantic salmon (Salmo salar) in response to graded levels of fish protein hydrolysate in the diet. Aquaculture 239:331–349. doi:10.1016/j.aquaculture.2004.06.015

    Article  CAS  Google Scholar 

  • Renna MD, Oyadeyi AS, Bossi E, Kottra G, Peres A (2011a) Functional and structural determinants of reverse operation in the pH-dependent oligopeptide transporter PepT1. Cell Mol Life Sci 68:2961–2975. doi:10.1007/s00018-010-0604-3

    Article  CAS  PubMed  Google Scholar 

  • Renna MD, Sangaletti R, Bossi E, Cherubino F, Kottra G, Peres A (2011b) Unified modeling of the mammalian and fish proton-dependent oligopeptide transporter PepT1. Channels 5:89–99. doi:10.4161/chan.5.1.13505

    Article  CAS  PubMed  Google Scholar 

  • Reshkin SJ, Ahearn GA (1991) Intestinal glycyl-L-phenylalanine and L-phenylalanine transport in a euryhaline teleost. Am J Physiol 260:R563–R569

    CAS  PubMed  Google Scholar 

  • Rimoldi S, Bossi E, Harpaz S, Cattaneo AG, Bernardini G, Saroglia M, Terova G (2015) Intestinal B0AT1 (SLC6A19) and PEPT1 (SLC15A1) mRNA levels in European sea bass (Dicentrarchus labrax) reared in fresh water and fed fish and plant protein sources. J Nutr Sci 4:e21. doi:10.1017/jns.2015.9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rizzello A, Romano A, Kottra G, Acierno R, Storelli C, Verri T, Daniel H, Maffia M (2013) Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter. Proc Natl Acad Sci USA 110:7068–7073. doi:10.1073/pnas.1220417110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts TJ, Azain MJ, White BD, Martin RJ (1995) Rats treated with somatotropin select diets higher in protein. J Nutr 125:2669–2678

    CAS  PubMed  Google Scholar 

  • Röder PV, Geillinger KE, Zietek TS, Thorens B, Koepsell H, Daniel H (2014) The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS ONE 9:e89977. doi:10.1371/journal.pone.0089977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roediger WE, Millard S (1996) Colonocyte metabolism. Gut 38:792–793. doi:10.1136/gut.38.5.792-a

    Article  CAS  PubMed  Google Scholar 

  • Romano A, Kottra G, Barca A, Tiso N, Maffia M, Argenton F, Daniel H, Storelli C, Verri T (2006) High-affinity peptide transporter PEPT2 (SLC15A2) of the zebrafish Danio rerio: functional properties, genomic organization, and expression analysis. Physiol Genomics 24:207–217. doi:10.1152/physiolgenomics.00227.2005

    Article  CAS  PubMed  Google Scholar 

  • Romano A, Barca A, Kottra G, Daniel H, Storelli C, Verri T (2010) Functional expression of SLC15 peptide transporters in rat thyroid follicular cells. Mol Cell Endocrinol 315:174–181. doi:10.1016/j.mce.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  • Romano A, Barca A, Storelli C, Verri T (2014) Teleost fish models in membrane transport research: the PEPT1(SLC15A1) H+-oligopeptide transporter as a case study. J Physiol 592:881–897. doi:10.1113/jphysiol.2013.259622

    Article  CAS  PubMed  Google Scholar 

  • Rome S, Barbot L, Windsor E, Kapel N, Tricottet V, Huneau JF, Reynes M, Gobert JG, Tomé D (2002) The regionalization of PepT1, NBAT and EAAC1 transporters in the small intestine of rats are unchanged from birth to adulthood. J Nutr 132:1009–1011

    CAS  PubMed  Google Scholar 

  • Romero M, Kanai Y, Gunshin H, Hediger M (1998) Expression cloning using Xenopus laevis oocytes. Methods Enzymol 296:17–52. doi:10.1016/S0076-6879(98)96004-9

    Article  CAS  PubMed  Google Scholar 

  • Romero MF, Chen AP, Parker MD, Boron WF (2013) The SLC4 family of bicarbonate (HCO3 ) transporters. Mol Aspects Med 34:159–182. doi:10.1016/j.mam.2012.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronkin D, Seroussi E, Nitzan T, Doron-Faigenboim A, Cnaani A (2015) Intestinal transcriptome analysis revealed differential salinity adaptation between two tilapiine species. Comp Biochem Physiol Part D Genomics Proteomics 13:35–43. doi:10.1016/j.cbd.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  • Rønnestad I, Gavaia PJ, Viegas CS, Verri T, Romano A, Nilsen TO, Jordal AE, Kamisaka Y, Cancela ML (2007a) Oligopeptide transporter PepT1 in Atlantic cod (Gadus morhua L.): cloning, tissue expression and comparative aspects. J Exp Biol 210:3883–3896. doi:10.1242/jeb.007898

    Article  PubMed  CAS  Google Scholar 

  • Rønnestad I, Kamisaka Y, Conceição LEC, Morais S, Tonheim SK (2007b) Digestive physiology of marine fish larvae: hormonal control and processing capacity for proteins, peptides and amino acids. Aquaculture 268:82–97. doi:10.1016/j.aquaculture.2007.04.031

    Article  CAS  Google Scholar 

  • Rønnestad I, Murashita K, Kottra G, Jordal AE, Narawane S, Jolly C, Daniel H, Verri T (2010) Molecular cloning and functional expression of Atlantic salmon peptide transporter 1 in Xenopus oocytes reveals efficient intestinal uptake of lysine-containing and other bioactive di- and tripeptides in teleost fish. J Nutr 140:893–900. doi:10.3945/jn.109.118240

    Article  PubMed  CAS  Google Scholar 

  • Rønnestad I, Akiba Y, Kaji I, Kaunitz JD (2014) Duodenal luminal nutrient sensing. Curr Opin Pharmacol 19:67–75. doi:10.1016/j.coph.2014.07.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rubio-Aliaga I, Daniel H (2002) Mammalian peptide transporters as targets for drug delivery. Trends Pharmacol Sci 23:434–440. doi:10.1016/S0165-6147(02)02072-2

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Aliaga I, Daniel H (2008) Peptide transporters and their roles in physiological processes and drug disposition. Xenobiotica 38:1022–1042. doi:10.1080/00498250701875254

    Article  CAS  PubMed  Google Scholar 

  • Ruemmele FM, Schwartz S, Seidman EG, Dionne S, Levy E, Lentze MJ (2003) Butyrate induced Caco-2 cell apoptosis is mediated via the mitochondrial pathway. Gut 52:94–100. doi:10.1136/gut.52.1.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rühl A, Hoppe S, Frey I, Daniel H, Schemann M (2005) Functional expression of the peptide transporter PEPT2 in the mammalian enteric nervous system. J Comp Neurol 490:1–11. doi:10.1002/cne.20617

    Article  PubMed  CAS  Google Scholar 

  • Ruohonen K, Grove DJ, McIlroy JT (1997) The amount of food ingested in a single meal by rainbow trout offered chopped herring, dry and wet diets. J Fish Biol 51:93–105. doi:10.1111/j.1095-8649.1997.tb02516.x

    Article  CAS  PubMed  Google Scholar 

  • Saito S, Iida A, Sekine A, Ogawa C, Kawauchi S, Higuchi S, Nakamura Y (2002) Catalog of 238 variations among six human genes encoding solute carriers (hSLCs) in the Japanese population. J Hum Genet 47:576–584. doi:10.1007/s100380200088

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Terada T, Shimakura J, Katsura T, Inui K (2008) Regulatory mechanism governing the diurnal rhythm of intestinal H+/peptide cotransporter 1 (PEPT1). Am J Physiol Gastrointest Liver Physiol 295:G395–G402. doi:10.1152/ajpgi.90317.2008

    Article  CAS  PubMed  Google Scholar 

  • Sakata K, Yamashita T, Maeda M, Moriyama Y, Shimada S, Tohyama M (2001) Cloning of a lymphatic peptide/histidine transporter. Biochem J 356:53–60. doi:10.1042/bj3560053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sala-Rabanal M, Loo DDF, Hirayama BA, Turk E, Wright EM (2006) Molecular interactions between dipeptides, drugs and the human intestinal H+/oligopeptide cotransporter, hPEPT1. J Physiol 574:149–166. doi:10.1113/jphysiol.2006.107904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sales J (2009) The effect of fish meal replacement by soyabean products on fish growth: a meta-analysis. Br J Nutr 102:1709–1722. doi:10.1017/S0007114509991279

    Article  CAS  PubMed  Google Scholar 

  • Sales J (2011) First feeding of freshwater fish larvae with live feed versus compound diets: a meta-analysis. Aquacult Int 19:1217–1228. doi:10.1007/s10499-011-9424-1

    Article  Google Scholar 

  • Salman NA (2009) Effect of dietary salt on feeding, digestion, growth and osmoregulation in teleost fish. In: Handy RD, Bury NR, Flik G (eds) Essential reviews in experimental biology, vol 1., Osmoregulation and ion transport: integrating physiological, molecular and environmental aspectsSociety for Experimental Biology Press, London, pp 109–150

    Google Scholar 

  • Samsudin F, Parker JL, Sansom MSP, Newstead S, Fowler PW (2016) Accurate prediction of ligand affinities for a proton-dependent oligopeptide transporter. Cell Chem Biol 23:299–309. doi:10.1016/j.chembiol.2015.11.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangaletti R, Terova G, Peres A, Bossi E, Corà S, Saroglia M (2009) Functional expression of the oligopeptide transporter PepT1 from the sea bass (Dicentrarchus labrax). Pflugers Arch 459:47–54. doi:10.1007/s00424-009-0700-0

    Article  CAS  PubMed  Google Scholar 

  • Santer R, Hillebrand G, Steinmann B, Schaub J (2003) Intestinal glucose transport: evidence for a membrane traffic-based pathway in humans. Gastroenterology 124:34–39. doi:10.1053/gast.2003.50009

    Article  CAS  PubMed  Google Scholar 

  • Sardar P, Abid M, Randhawa HS, Prabhakar SK (2009) Effect of dietary lysine and methionine supplementation on growth, nutrient utilization, carcass compositions and haemato-biochemical status in Indian Major Carp, Rohu (Labeo rohita H.) fed soy protein-based diet. Aquacult Nutr 15:339–346. doi:10.1111/j.1365-2095.2008.00598.x

    Article  CAS  Google Scholar 

  • Sasawatari S, Okamura T, Kasumi E, Tanaka-Furuyama K, Yanobu-Takanashi R, Shirasawa S, Kato N, Toyama-Sorimachi N (2011) The solute carrier family 15A4 regulates TLR9 and NOD1 functions in the innate immune system and promotes colitis in mice. Gastroenterology 140:1513–1525. doi:10.1053/j.gastro.2011.01.041

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Hashiguchi Y, Nishida M (2009) Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication. BMC Evol Biol 9:127. doi:10.1186/1471-2148-9-127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Secor SM (2003) Gastric function and its contribution to the postprandial metabolic response of the Burmese python Python molurus. J Exp Biol 206:1621–1630. doi:10.1242/jeb.00300

    Article  PubMed  Google Scholar 

  • Secor SM, Diamond J (2000) Evolution of regulatory responses to feeding in snakes. Physiol Biochem Zool 73:123–141. doi:10.1086/316734

    Article  CAS  PubMed  Google Scholar 

  • Shaw D, Gohil K, Basson MD (2012) Intestinal mucosal atrophy and adaptation. World J Gastroenterol 18:6357–6375. doi:10.3748/wjg.v18.i44.6357

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen H, Smith D, Brosius F III (2001) Developmental expression of PepT1 and PepT2 in rat small intestine, colon, and kidney. Pediatr Res 49:789–795. doi:10.1203/00006450-200106000-00013

    Article  CAS  PubMed  Google Scholar 

  • Shi B, Song D, Xue H, Li N, Li J (2006) PepT1 mediates colon damage by transporting fMLP in rats with bowel resection. J Surg Res 136:38–44. doi:10.1016/j.jss.2006.05.025

    Article  CAS  PubMed  Google Scholar 

  • Shimakura J, Terada T, Katsura T, Inui K (2005) Characterization of the human peptide transporter PEPT1 promoter: sp1 functions as a basal transcriptional regulator of human PEPT1. Am J Physiol Gastrointest Liver Physiol 289:G471–G477. doi:10.1152/ajpgi.00025.2005

    Article  CAS  PubMed  Google Scholar 

  • Shimakura J, Terada T, Saito H, Katsura T, Inui K (2006a) Induction of intestinal peptide transporter 1 expression during fasting is mediated by peroxisome proliferators-activated receptor alpha. Am J Physiol Gastrointest Liver Physiol 291:G851–G856. doi:10.1152/ajpgi.00171.2006

    Article  CAS  PubMed  Google Scholar 

  • Shimakura J, Terada T, Shimada Y, Katsura T, Inui K (2006b) The transcription factor Cdx2 regulates the intestine-specific expression of human peptide transporter 1 through functional interaction with Sp1. Biochem Pharmacol 71:1581–1588. doi:10.1016/j.bcp.2006.03.001

    Article  CAS  PubMed  Google Scholar 

  • Shin SC, Ahn DH, Kim SJ, Pyo CW, Lee H, Kim MK, Lee J, Lee JE, Detrich HW, Postlethwait JH, Edwards D, Lee SG, Lee JH, Park H (2014) The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment. Genome Biol 15:468. doi:10.1186/s13059-014-0468-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shiraga T, Miyamoto K, Tanaka H, Yamamoto H, Taketani Y, Morita K, Tamai I, Tsuji A, Takeda E (1999) Cellular and molecular mechanisms of dietary regulation on rat intestinal H+/peptide transporter PepT1. Gastroenterology 116:354–362. doi:10.1016/S0016-5085(99)70132-0

    Article  CAS  PubMed  Google Scholar 

  • Simpson JE, Schweinfest CW, Shull GE, Gawenis LR, Walker NM, Boyle KT, Soleimani M, Clarke LL (2007) PAT-1 (Slc26a6) is the predominant apical membrane Cl/HCO3 exchanger in the upper villous epithelium of the murine duodenum. Am J Physiol Gastrointest Liver Physiol 292:G1079–G1088. doi:10.1152/ajpgi.00354.2006

    Article  CAS  PubMed  Google Scholar 

  • Simpson JE, Walker NM, Supuran CT, Soleimani M, Clarke LL (2010) Putative anion transporter-1 (Pat-1, Slc26a6) contributes to intracellular pH regulation during H+-dipeptide transport in duodenal villous epithelium. Am J Physiol Gastrointest Liver Physiol 298:G683–G691. doi:10.1152/ajpgi.00293.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skalli A, Zambonino-Infante JL, Kotzamanis Y, Fabregat R, Gisbert E (2014) Peptide molecular weight distribution of soluble protein fraction affects growth performance and quality in European sea bass (Dicentrarchus labrax) larvae. Aquacult Nutr 20:118–131. doi:10.1111/anu.12058

    Article  CAS  Google Scholar 

  • Small BC, Soares JH Jr (2000) Quantitative dietary lysine requirement of juvenile striped bass Morone saxatilis. Aquacult Nutr 6:207–212. doi:10.1046/j.1365-2095.2000.00140.x

    Article  CAS  Google Scholar 

  • Smith HS (1930) The absorption and excretion of water and salts by marine teleosts. Am J Physiol 93:480–505

    CAS  Google Scholar 

  • Smith NF, Talbot C, Eddy FB (1989) Dietary salt intake and its relevance to ionic regulation in freshwater salmonids. J Fish Biol 35:749–753. doi:10.1111/j.1095-8649.1989.tb03026.x

    Article  Google Scholar 

  • Smith DE, Clémençon B, Hediger MA (2013a) Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol Aspects Med 34:323–336. doi:10.1016/j.mam.2012.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DL Jr, Barry RJ, Powell ML, Nagy TR, D’Abramo LR, Watts SA (2013b) Dietary protein source influence on body size and composition in growing zebrafish. Zebrafish 10:439–446. doi:10.1089/zeb.2012.0864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder GS, Gaylord TG, Barrows FT, Overturf K, Cain KD, Hill RA, Hardy RW (2012) Effects of carnosine supplementation to an all-plant protein diet for rainbow trout (Oncorhynchus mykiss). Aquaculture 338:72–81. doi:10.1016/j.aquaculture.2011.12.042

    Article  CAS  Google Scholar 

  • Soga M, Ohashi A, Taniguchi M, Matsui T, Tsuda T (2014) The di-peptide Trp-His activates AMP-activated protein kinase and enhances glucose uptake independently of insulin in L6 myotubes. FEBS Open Bio 4:898–904. doi:10.1016/j.fob.2014.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solcan N, Kwok J, Fowler PW, Cameron AD, Drew D, Iwata S, Newstead S (2012) Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J 31:3411–3421. doi:10.1038/emboj.2012.157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somero GN (2003) Protein adaptations to temperature and pressure: complementary roles of adaptive changes in amino acid sequence and internal milieu. Comp Biochem Physiol B Biochem Mol Biol 136:577–591. doi:10.1016/S1096-4959(03)00215-X

    Article  PubMed  CAS  Google Scholar 

  • Somero GN (2004) Adaptation of enzymes to temperature: searching for basic “strategies”. Comp Biochem Physiol B: Biochem Mol Biol 139:321–333. doi:10.1016/j.cbpc.2004.05.003

    Article  CAS  Google Scholar 

  • Song S, Hooiveld GJ, Li M, Zhao F, Zhang W, Xu X, Muller M, Li C, Zhou G (2016) Dietary soy and meat proteins induce distinct physiological and gene expression changes in rats. Sci Rep 6:20036. doi:10.1038/srep20036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spanier B (2014) Transcriptional and functional regulation of the intestinal peptide transporter PEPT1. J Physiol 592:871–879. doi:10.1113/jphysiol.2013.258889

    Article  CAS  PubMed  Google Scholar 

  • Spanier B, Lasch K, Marsch S, Benner J, Liao W, Hu H, Kienberger H, Eisenreich W, Daniel H (2009) How the intestinal peptide transporter PEPT-1 contributes to an obesity phenotype in Caenorhabditits elegans. PLoS ONE 4:e6279. doi:10.1371/journal.pone.0006279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Speier JS, Yadgary L, Uni Z, Wong EA (2012) Gene expression of nutrient transporters and digestive enzymes in the yolk sac membrane and small intestine of the developing embryonic chick. Poult Sci 91:1941–1949. doi:10.3382/ps.2011-02092

    Article  CAS  PubMed  Google Scholar 

  • Sreedharan S, Stephansson O, Schiöth HB, Fredriksson R (2011) Long evolutionary conservation and considerable tissue specificity of several atypical solute carrier transporters. Gene 478:11–18. doi:10.1016/j.gene.2010.10.011

    Article  CAS  PubMed  Google Scholar 

  • Starck JM, Beese K (2002) Structural flexibility of the small intestine and liver of garter snakes in response to feeding and fasting. J Exp Biol 205:1377–1388

    PubMed  Google Scholar 

  • Steel A, Nussberger S, Romero MF, Boron WF, Boyd CA, Hediger MA (1997) Stoichiometry and pH dependence of the rabbit proton-dependent oligopeptide transporter PepT1. J Physiol 498:563–569. doi:10.1113/jphysiol.1997.sp021883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart AK, Boyd CA, Vaughan-Jones RD (1999) A novel role for carbonic anhydrase: cytoplasmic pH gradient dissipation in mouse small intestinal enterocytes. J Physiol 516:209–217. doi:10.1111/j.1469-7793.1999.209aa.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun D, Tan F, Fang D, Wang Y, Zeng S, Jiang H (2013a) Expression of proton-coupled oligopeptide transporter (POTs) in prostate of mice and patients with benign prostatic hyperplasia (BPH) and prostate cancer (PCa). Prostate 73:287–295. doi:10.1002/pros.22568

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Wang Y, Tan F, Fang D, Hu Y, Smith DE, Jiang H (2013b) Functional and molecular expression of the proton-coupled oligopeptide transporters in spleen and macrophages from mouse and human. Mol Pharm 10:1409–1416. doi:10.1021/mp300700p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundell KS, Sundh H (2012) Intestinal fluid absorption in anadromous salmonids: importance of tight junctions and aquaporins. Front Physiol 3:388. doi:10.3389/fphys.2012.00388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takanaga H, Mackenzie B, Peng JB, Hediger MA (2005) Characterization of a branched-chain amino-acid transporter SBAT1 (SLC6A15) that is expressed in human brain. Biochem Biophys Res Commun 337:892–900. doi:10.1016/j.bbrc.2005.09.128

    Article  CAS  PubMed  Google Scholar 

  • Takei Y (2015) From aquatic to terrestrial life: evolution of the mechanisms for water acquisition. Zoolog Sci 32:1–7. doi:10.2108/zs140142

    Article  PubMed  Google Scholar 

  • Takeuchi F, Ochiai Y, Serizawa M, Yanai K, Kuzuya N, Kajio H, Honjo S, Takeda N, Kaburagi Y, Yasuda K, Shirasawa S, Sasazuki T, Kato N (2008) Search for type 2 diabetes susceptibility genes on chromosomes 1q, 3q and 12q. J Hum Genet 53:314–324. doi:10.1007/s10038-008-0254-6

    Article  CAS  PubMed  Google Scholar 

  • Teerapornpuntakit J, Klanchui A, Karoonuthaisiri N, Wongdee K, Charoenphandhu N (2014) Expression of transcripts related to intestinal ion and nutrient absorption in pregnant and lactating rats as determined by custom-designed cDNA microarray. Mol Cell Biochem 391:103–116. doi:10.1007/s11010-014-1992-8

    Article  CAS  PubMed  Google Scholar 

  • Terada T, Inui K (2007) Gene expression and regulation of drug transporters in the intestine and kidney. Biochem Pharmacol 73:440–449. doi:10.1016/j.bcp.2006.10.010

    Article  CAS  PubMed  Google Scholar 

  • Terada T, Sawada K, Saito H, Hashimoto Y, Inui K (1999) Functional characteristics of basolateral peptide transporter in the human intestinal cell line Caco-2. Am J Physiol 276:G1435–G1441

    CAS  PubMed  Google Scholar 

  • Terada T, Shimada Y, Pan X, Kishimoto K, Sakurai T, Doi R, Onodera H, Katsura T, Imamura M, Inui K (2005) Expression profiles of various transporters for oligopeptides, amino acids and organic ions along the human digestive tract. Biochem Pharmacol 70:1756-1763. doi: 10.1016/j.bcp.2005.09.027

  • Terjesen BF, Lee KJ, Zhang Y, Failla M, Dabrowski K (2006) Optimization of dipeptide-protein mixtures in experimental diet formulations for rainbow trout (Oncorhynchus mykiss) alevins. Aquaculture 254:517–525. doi:10.1016/j.aquaculture.2005.11.013

    Article  CAS  Google Scholar 

  • Terova G, Bernadini G, Binelli G, Gornati R, Saroglia M (2006) cDNA encoding sequences for myostatin and FGF6 in sea bass (Dicentrarchus labrax L.) and the effect of fasting and refeeding on their abundance levels. Domest Anim Endocrinol 30:304–319. doi:10.1016/j.domaniend.2005.08.003

    Article  CAS  PubMed  Google Scholar 

  • Terova G, Rimoldi S, Chini V, Gornati R, Bernardini G, Saroglia M (2007) Cloning and expression analysis of insulin-like growth factor I and II in liver and muscle of sea bass (Dicentrarchus labrax L.) during long-term fasting and refeeding. J Fish Biol 70B:219–233. doi:10.1111/j.1095-8649.2007.01402.x

    Article  CAS  Google Scholar 

  • Terova G, Corà S, Verri T, Rimoldi S, Bernardini G, Saroglia M (2009) Impact of feed availability on PepT1 mRNA expression levels in sea bass (Dicentrarchus labrax). Aquaculture 294:288–299. doi:10.1016/j.aquaculture.2009.06.014

    Article  CAS  Google Scholar 

  • Terova G, Robaina L, Izquierdo M, Cattaneo A, Molinari S, Bernardini G, Saroglia M (2013) PepT1 mRNA expression levels in sea bream (Sparus aurata) fed different plant protein sources. SpringerPlus 2:17. doi:10.1186/2193-1801-2-17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tesser MB, Terjesen BF, Zhang Y, Portella MC, Dabrowski K (2005) Free- and peptide-based dietary arginine supplementation for the South American fish pacu (Piaractus mesopotamicus). Aquacult Nutr 11:443–453. doi:10.1111/j.1365-2095.2005.00373.x

    Article  CAS  Google Scholar 

  • Thamotharan M, Gomme G, Zonno V, Maffia M, Storelli C, Ahearn GA (1996a) Electrogenic, proton-coupled, peptide (glycylsarcosine) transport in herbivorous and carnivorous teleosts. Am J Physiol 270:R939–R947

    CAS  PubMed  Google Scholar 

  • Thamotharan M, Zonno V, Storelli C, Ahearn GA (1996b) Basolateral dipeptide transport by the intestine of the teleost Oreochromis mossambicus. Am J Physiol 270:R948–R954

    CAS  PubMed  Google Scholar 

  • Thamotharan M, Bawani S, Zhou X, Adibi S (1998) Mechanism of dipeptide stimulation of its own transport in a human intestinal cell line. Proc Assoc Am Physicians 110:361–368

    CAS  PubMed  Google Scholar 

  • Thamotharan M, Bawani SZ, Zhou X, Adibi SA (1999) Functional and molecular expression of intestinal oligopeptide transporter (PEPT-1) after a brief fast. Metabolism 6:681–684. doi:10.1016/S0026-0495(99)90164-6

    Article  Google Scholar 

  • Thwaites DT, Anderson CM (2007) H+-coupled nutrient, micronutrient and drug transporters in the mammalian small intestine. Exp Physiol 92:603–619. doi:10.1113/expphysiol.2005.029959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thwaites DT, Brown CD, Hirst BH, Simmons NL (1993a) H+-coupled dipeptide (glycylsarcosine) transport across apical and basal borders of human intestinal Caco-2 cell monolayers display distinctive characteristics. Biochim Biophys Acta 1151:237–245. doi:10.1016/0005-2736(93)90108-C

    Article  CAS  PubMed  Google Scholar 

  • Thwaites DT, Brown CD, Hirst BH, Simmons NL (1993b) Transepithelial glycylsarcosine transport in intestinal Caco-2 cells mediated by expression of H+-coupled carriers at both apical and basal membranes. J Biol Chem 268:7640–7642

    CAS  PubMed  Google Scholar 

  • Thwaites DT, Hirst BH, Simmons NL (1993c) Direct assessment of dipeptide/H+ symport in intact human intestinal (Caco-2) epithelium: a novel method utilising continuous intracellular pH measurement. Biochem Biophys Res Commun 194:432–438. doi:10.1006/bbrc.1993.1838

    Article  CAS  PubMed  Google Scholar 

  • Thwaites DT, Ford D, Glanville M, Simmons NL (1999) H+/solute-induced intracellular acidification leads to selective activation of apical Na+/H+ exchange in human intestinal epithelial cells. J Clin Invest 104:629–635. doi:10.1172/JCI7192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thwaites DT, Kennedy DJ, Raldua D, Anderson CM, Mendoza ME, Bladen CL, Simmons NL (2002) H+/dipeptide absorption across the human intestinal epithelium is controlled indirectly via a functional Na+/H+ exchanger. Gastroenterology 122:1322–1333. doi:10.1053/gast.2002.32992

    Article  CAS  PubMed  Google Scholar 

  • Tian J, He G, Mai K, Liu C (2015) Effects of postprandial starvation on mRNA expression of endocrine-, amino acid and peptide transporter-, and metabolic enzyme-related genes in zebrafish (Danio rerio). Fish Physiol Biochem 41:773–787. doi:10.1007/s10695-015-0045-x

    Article  CAS  PubMed  Google Scholar 

  • Tibaldi E, Lanari D (1991) Optimal dietary lysine levels for growth and protein utilisation of fingerlings seabass (Dicentrarchus labrax L.) fed semipurified diets. Aquaculture 95:297–304. doi:10.1016/0044-8486(91)90095-O

    Article  CAS  Google Scholar 

  • Tulli F, Messina M, Calligaris M, Tibaldi E (2010) Response of European sea bass (Dicentrarchus labrax) to graded levels of methionine (total sulfur amino acids) in soya protein-based semi-purified diets. Br J Nutr 104:664–673. doi:10.1017/S0007114510001029

    Article  CAS  PubMed  Google Scholar 

  • Twibell RG, Wilson KA, Brown PB (2000) Dietary sulphur amino acid requirement of juvenile yellow perch fed the maximum cystine replacement value for methionine. J Nutr 130:612–616

    CAS  PubMed  Google Scholar 

  • Uni Z, Ganot S, Sklan D (1998) Posthatch development of mucosal function in the broiler small intestine. Poult Sci 77:75–82. doi:10.1093/ps/77.1.75

    Article  CAS  PubMed  Google Scholar 

  • Uni Z, Tako E, Gal-Garber O, Sklan D (2003) Morphological, molecular, and functional changes in the chicken small intestine of the late-term embryo. Poult Sci 82:1747–1754. doi:10.1093/ps/82.11.1747

    Article  CAS  PubMed  Google Scholar 

  • Valente LM, Bower NI, Johnston IA (2012) Postprandial expression of growth-related genes in Atlantic salmon (Salmo salar L.) juveniles fasted for 1 week and fed a single meal to satiation. Br J Nutr 108:2148–2157. doi:10.1017/S0007114512000396

    Article  CAS  PubMed  Google Scholar 

  • Van L, Pan YX, Bloomquist JR, Webb KE Jr, Wong EA (2005) Developmental regulation of a turkey intestinal peptide transporter (PepT1). Poult Sci 84:75–82. doi:10.1093/ps/84.1.75

    Article  CAS  PubMed  Google Scholar 

  • Vavricka SR, Musch MW, Chang JE, Nakagawa Y, Phanvijhitsiri K, Waypa TS, Merlin D, Schneewind O, Chang EB (2004) hPepT1 transports muramyl dipeptide, activating NF-kappaB and stimulating IL-8 secretion in human colonic Caco2/bbe cells. Gastroenterology 127:1401–1409. doi:10.1053/j.gastro.2004.07.024

    Article  CAS  PubMed  Google Scholar 

  • Vazquez JA, Morse EL, Adibi SA (1985) Effect of starvation on amino acid and peptide transport and peptide hydrolysis in humans. Am J Physiol 249:G563–G566

    CAS  PubMed  Google Scholar 

  • Vente-Spreeuwenberg MAM, Verdonk JMAJ, Koninkx JFJG, Beynen AC, Verstegen MWA (2004) Dietary protein hydrolysates vs. the intact proteins do not enhance mucosal integrity and growth performance in weaned piglets. Livest Prod Sci 85:151–164. doi:10.1016/S0301-6226(03)00132-5

    Article  Google Scholar 

  • Verri T, Maffia M, Storelli C (1992) H+/glycyl-glycine cotransport in eel intestinal brush-border membrane vesicles: studies with the pH-sensitive dye acridine orange. Biochim Biophys Acta 1110:123–126. doi:10.1016/0005-2736(92)90303-4

    Article  CAS  PubMed  Google Scholar 

  • Verri T, Maffia M, Danieli A, Herget M, Wenzel U, Daniel H, Storelli C (2000) Characterisation of the H+/peptide cotransporter of eel intestinal brush-border membranes. J Exp Biol 203:2991–3001

    CAS  PubMed  Google Scholar 

  • Verri T, Kottra G, Romano A, Tiso N, Peric M, Maffia M, Boll M, Argenton F, Daniel H, Storelli C (2003) Molecular and functional characterisation of the zebrafish (Danio rerio) PEPT1-type peptide transporter. FEBS Lett 549:115–122. doi:10.1016/S0014-5793(03)00759-2

    Article  CAS  PubMed  Google Scholar 

  • Verri T, Romano A, Barca A, Kottra G, Daniel H, Storelli C (2010) Transport of di- and tripeptides in teleost fish intestine. Aquacult Res 41:641–653. doi:10.1111/j.1365-2109.2009.02270.x

    Article  CAS  Google Scholar 

  • Verri T, Terova G, Dabrowski K, Saroglia M (2011) Peptide transport and animal growth: the fish paradigm. Biol Lett 7:597–600. doi:10.1098/rsbl.2010.1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verri T, Terova G, Romano A, Barca A, Pisani P, Storelli C, Saroglia M (2012) The SoLute Carrier (SLC) family series in teleost fish. In: Saroglia M, Liu Z (eds) Functional genomics in aquaculture. Wiley, Oxford, pp 219–320

    Chapter  Google Scholar 

  • Vig BS, Stouch TR, Timoszyk JK, Quan Y, Wall DA, Smith RL, Faria TN (2006) Human PEPT1 pharmacophore distinguishes between dipeptide transport and binding. J Med Chem 49:3636–3644. doi:10.1021/jm0511029

    Article  CAS  PubMed  Google Scholar 

  • Volff JN (2005) Genome evolution and biodiversity in teleost fish. Heredity 94:280–294. doi:10.1038/sj.hdy.6800635

    Article  CAS  PubMed  Google Scholar 

  • Wada M, Miyakawa S, Shimada A, Okada N, Yamamoto A, Fujita T (2005) Functional linkage of H+/peptide transporter PEPT2 and Na+/H+ exchanger in primary cultures of astrocytes from mouse cerebral cortex. Brain Res 1044:33–41. doi:10.1016/j.brainres.2005.02.064

    Article  CAS  PubMed  Google Scholar 

  • Wadiche JI, Kavanaugh MP (1998) Macroscopic and microscopic properties of a cloned glutamate transporter/chloride channel. J Neurosci 18:7650–7661

    CAS  PubMed  Google Scholar 

  • Walker D, Thwaites DT, Simmons NL, Gilbert HJ, Hirst BH (1998) Substrate upregulation of the human small intestinal peptide transporter, hPepT1. J Physiol 507:697–706. doi:10.1111/j.1469-7793.1998.697bs.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker NM, Simpson JE, Hoover EE, Brazill JM, Schweinfest CW, Soleimani M, Clarke LL (2011) Functional activity of Pat-1 (Slc26a6) Cl/HCO3 exchange in the lower villus epithelium of murine duodenum. Acta Physiol 201:21–31. doi:10.1111/j.1748-1716.2010.02210.x

    Article  CAS  Google Scholar 

  • Walton MJ, Cowey CB, Adron JW (1982) Methionine metabolism in rainbow trout fed diets of differing methionine and cysteine content. J Nutr 112:1525–1535

    CAS  PubMed  Google Scholar 

  • Walton MJ, Cowey C, Adron JW (1984) The effect of dietary lysine levels on growth and metabolism of rainbow trout (Salmo gairdneri). Br J Nutr 52:115–122. doi:10.1079/BJN19840077

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Liu YH, Tian LX, Xie MQ, Yang HJ, Wang Y, Liang GY (2005) Quantitative dietary lysine requirement of juvenile grass carp Ctenopharyngodon idella. Aquaculture 249:419–429. doi:10.1016/j.aquaculture.2005.04.005

    Article  CAS  Google Scholar 

  • Wang T, Hung CC, Randall DJ (2006) The comparative physiology of food deprivation: from feast to famine. Annu Rev Physiol 68:223–251. doi:10.1146/annurev.physiol.68.040104.105739

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Shi C, Zhang J, Gu W, Li T, Gen M, Chu W, Huang R, Liu Y, Hou Y, Li P, Yin Y (2009) Molecular cloning, distribution and ontogenic expression of the oligopeptide transporter PepT1 mRNA in Tibetan suckling piglets. Amino Acids 37:593–601. doi:10.1007/s00726-008-0178-7

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Du J, Lam SH, Mathavan S, Matsudaira P, Gong Z (2010) Morphological and molecular evidence for functional organization along the rostrocaudal axis of the adult zebrafish intestine. BMC Genom 11:392. doi:10.1186/1471-2164-11-392

    Article  CAS  Google Scholar 

  • Wang P, Lu YQ, Wen Y, Yu DY, Ge L, Dong WR, Xiang LX, Shao JZ (2013) IL-16 induces intestinal inflammation via PepT1 upregulation in a pufferfish model: new insights into the molecular mechanism of inflammatory bowel disease. J Immunol 191:1413–1427. doi:10.4049/jimmunol.1202598

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, He G, Wang X, Mai K, Xu W, Zhou H (2014a) Dietary sulphur amino acid modulations of taurine biosynthesis in juvenile turbot (Psetta maxima). Aquaculture 422:141–145. doi:10.1016/j.aquaculture.2013.12.014

    Article  CAS  Google Scholar 

  • Wang Y, Sun D, Song F, Hu Y, Smith DE, Jiang H (2014b) Expression and regulation of the proton-coupled oligopeptide transporter PhT2 by LPS in macrophages and mouse spleen. Mol Pharm 11:1880–1888. doi:10.1021/mp500014r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe T (2002) Strategies for further development of aquatic feeds. Fisheries Sci 68:242–252. doi:10.1046/j.1444-2906.2002.00418.x

    Article  CAS  Google Scholar 

  • Wei Y, Liang M, Mu Y, Zheng K, Xu H (2015) The effect of ultrafiltered fish protein hydrolysate level on growth performance, protein digestibility and mRNA expression of PepT1 in juvenile turbot (Scophthalmus maximus L.). Aquacult Nutr. doi:10.1111/anu.12319

  • Weintraut ML, Kim S, Dalloul RA, Wong EA (2016) Expression of small intestinal nutrient transporters in embryonic and posthatch turkeys. Poult Sci 95:90–98. doi:10.3382/ps/pev310

    Article  CAS  PubMed  Google Scholar 

  • Wenzel U, Meissner B, Döring F, Daniel H (2001) PEPT1-mediated uptake of dipeptides enhances the intestinal absorption of amino acids via transport system b0,+. J Cell Physiol 186:251–259. doi:10.1002/1097-4652(200102)186:2<251:AID-JCP1027>3.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  • Westerterp-Plantenga MS, Nieuwenhuizen A, Tomé D, Soenen S, Westerterp KR (2009) Dietary protein, weight loss, and weight maintenance. Annu Rev Nutr 29:21–41. doi:10.1146/annurev-nutr-080508-141056

    Article  CAS  PubMed  Google Scholar 

  • White BD, Porter MH, Martin RJ (2000) Effects of age on the feeding response to moderately low dietary protein in rats. Physiol Behav 68:673–681. doi:10.1016/S0031-9384(99)00229-2

    Article  CAS  PubMed  Google Scholar 

  • Whittamore JM (2012) Osmoregulation and epithelial water transport: lessons from the intestine of marine teleost fish. J Comp Physiol B 182:1–39. doi:10.1007/s00360-011-0601-3

    Article  PubMed  Google Scholar 

  • Whittamore JM, Cooper CA, Wilson RW (2010) HCO3 secretion and CaCO3 precipitation play major roles in intestinal water absorption in marine teleost fish in vivo. Am J Physiol Regul Integr Comp Physiol 298:R877–R886. doi:10.1152/ajpregu.00545.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RP (2002) Amino acid and proteins. In: Halver JE, Hardy RW (eds) Fish Nutrition. Academic Press, London, pp 162–164

    Google Scholar 

  • Wilson RW, Wilson JM, Grosell M (2002) Intestinal bicarbonate secretion by marine teleost fish: why and how? Biochim Biophys Acta 1566:182–193. doi:10.1016/S0005-2736(02)00600-4

    Article  CAS  PubMed  Google Scholar 

  • Windell JT, Norris DO, Kitchell JF, Norris JS (1969) Digestive response of rainbow trout, Salmo gairdneri, to pellet diets. J Fish Res Board Can 26:1801–1812. doi:10.1139/f69-164

    Article  Google Scholar 

  • Won ET, Borski RJ (2013) Endocrine regulation of compensatory growth in fish. Front Endocrinol (Lausanne) 4:74. doi:10.3389/fendo.2013.00074

    Google Scholar 

  • Wood CM, Bucking C, Grosell M (2010) Acid-base responses to feeding and intestinal Cl uptake in freshwater- and seawater-acclimated killifish, Fundulus heteroclitus, an agastric euryhaline teleost. J Exp Biol 213:2681–2692. doi:10.1242/jeb.039164

    Article  CAS  PubMed  Google Scholar 

  • Wrong O, Metcalfe-Gibson A, Morrison RB, Ng ST, Howard AV (1965) In vivo dialysis of faeces as a method of stool analysis. I. Technique and results in normal subjects. Clin Sci 28:357–375

    CAS  PubMed  Google Scholar 

  • Wu SP, Smith DE (2013) Impact of intestinal PepT1 on the kinetics and dynamics of N-formyl-methionyl-leucyl-phenylalanine, a bacterially-produced chemotactic peptide. Mol Pharm 10:677–684. doi:10.1021/mp300477w

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Li Y, Cheng J, Chen L, Zeng M, Wu Y, Wang J, Zhang J, Chu W (2016) Transcriptome analysis and postprandial expression of amino acid transporter genes in the fast muscles and gut of Chinese perch (Siniperca chuatsi). PLoS One 11:e0159533. doi:10.1371/journal.pone.0159533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wuensch T, Schulz S, Ullrich S, Lill N, Stelzl T, Rubio-Aliaga I, Loh G, Chamaillard M, Haller D, Daniel H (2013) The peptide transporter PEPT1 is expressed in distal colon in rodents and humans and contributes to water absorption. Am J Physiol Gastrointest Liver Physiol 305:G66–G73. doi:10.1152/ajpgi.00491.2012

    Article  CAS  PubMed  Google Scholar 

  • Xu D, He G, Mai K, Zhou H, Song F (2016a) Expression pattern of peptide and amino acid transporter genes in digestive tract of juvenile turbot (Scophthalmus maximus L.). J Ocean Univ China. 15:334–340. doi:10.1007/s11802-016-2768-4

    Article  CAS  Google Scholar 

  • Xu H, Mu Y, Zhang Y, Li J, Liang M, Zheng K, Wei Y (2016b) Graded levels of fish protein hydrolysate in high plant diets for turbot (Scophthalmus maximus): effects on growth performance and lipid accumulation. Aquaculture 454:140–147. doi:10.1016/j.aquaculture.2015.12.006

    Article  CAS  Google Scholar 

  • Xue XH, Hryshko LV, Nicoll DA, Philipson KD, Tibbits GF (1999) Cloning, expression, and characterization of the trout cardiac Na+/Ca2+ exchanger. Am J Physiol 277:C693–C700

    CAS  PubMed  Google Scholar 

  • Yamashita T, Shimada S, Guo W, Sato K, Kohmura E, Hayakawa T, Takagi T, Tohyama M (1997) Cloning and functional expression of a brain peptide/histidine transporter. J Biol Chem 272:10205–10211. doi:10.1074/jbc.272.15.10205

    Article  CAS  PubMed  Google Scholar 

  • Yang RB, Xie CX, Fan QX, Gao C, Fang LB (2010) Ontogeny of the digestive tract in yellow catfish Pelteobagrus fulvidraco larvae. Aquaculture 302:112–123. doi:10.1016/j.aquaculture.2010.02.020

    Article  Google Scholar 

  • Yu Q, Liu X, Liu Y, Riederer B, Li T, Tian DA, Tuo B, Shull G, Seidler U (2016) Defective small intestinal anion secretion, dipeptide absorption, and intestinal failure in suckling NBCe1-deficient mice. Pflugers Arch. doi:10.1007/s00424-016-1836-3

    Google Scholar 

  • Yuen BB, Wong CK, Woo NY, Au DW (2007) Induction and recovery of morphofunctional changes in the intestine of juvenile carnivorous fish (Epinephelus coioides) upon exposure to foodborne benzo[a]pyrene. Aquat Toxicol 82:181–194. doi:10.1016/j.aquatox.2007.02.010

    Article  CAS  PubMed  Google Scholar 

  • Yúfera M, Moyano FJ, Astola A, Pousão-Ferreira P, Martínez-Rodríguez G (2012) Acidic digestion in a teleost: postprandial and circadian pattern of gastric pH, pepsin activity, and pepsinogen and proton pump mRNAs expression. PLoS ONE 7:e33687. doi:10.1371/journal.pone.0033687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zabielski R (2007) Hormonal and neural regulation of intestinal function in pigs. Livest Sci 108:32–40. doi:10.1016/j.livsci.2007.01.022

    Article  Google Scholar 

  • Zaïr ZM, Eloranta JJ, Stieger B, Kullak-Ublick GA (2008) Pharmacogenetics of OATP (SLC21/SLCO), OAT and OCT (SLC22) and PEPT (SLC15) transporters in the intestine, liver and kidney. Pharmacogenomics 9:597–624. doi:10.2217/14622416.9.5.597

    Article  PubMed  Google Scholar 

  • Zaldúa N, Naya DE (2014) Digestive flexibility during fasting in fish: a review. Comp Biochem Physiol A: Mol Integr Physiol 169:7–14. doi:10.1016/j.cbpa.2013.12.006

    Article  CAS  Google Scholar 

  • Zambonino-Infante JL, Cahu CL, Peres A (1997) Partial substitution of di- and tripeptides for native proteins in sea bass diet improves Dicentrarchus labrax larval development. J Nutr 127:608–614

    CAS  PubMed  Google Scholar 

  • Zeissig S, Fromm A, Mankertz J, Weiske J, Zeitz M, Fromm M, Schulzke JD (2007) Butyrate induces intestinal sodium absorption via Sp3-mediated transcriptional up-regulation of epithelial sodium channels. Gastroenterology 132:236–248. doi:10.1053/j.gastro.2006.10.033

    Article  CAS  PubMed  Google Scholar 

  • Zhang EY, Fu DJ, Pak YA, Stewart T, Mukhopadhyay N, Wrighton SA, Hillgren KM (2004) Genetic polymorphisms in human proton-dependent dipeptide transporter PEPT1: implications for the functional role of Pro586. J Pharmacol Exp Ther 310:437–445. doi:10.1124/jpet.104.065912

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Dabrowski K, Hliwa P, Gomulka P (2006) Indispensable amino acid concentrations decrease in tissues of stomachless fish, common carp in response to free amino acid- or peptide-based diets. Amino Acids 31:165–172. doi:10.1007/s00726-006-0345-7

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Ai Q, Mai K, Tan B, Li H, Zhang L (2008) Dietary lysine requirement of large yellow croaker, Pseudosciaena crocea R. Aquaculture 283:123–127. doi:10.1016/j.aquaculture.2008.06.035

    Article  CAS  Google Scholar 

  • Zhang Y, Viennois E, Zhang M, Xiao B, Han MK, Walter L, Garg P, Merlin D (2016) PepT1 expression helps maintain intestinal homeostasis by mediating the differential expression of miRNAs along the crypt-villus axis. Sci Rep 6:27119. doi:10.1038/srep27119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng K, Liang M, Yao H, Wang J, Chang Q (2012) Effect of dietary fish protein hydrolysate on growth, feed utilization and IGF-I levels of Japanese flounder (Paralichthys olivaceus). Aquacult Nutr 18:297–303. doi:10.1111/j.1365-2095.2011.00896.x

    Article  CAS  Google Scholar 

  • Zheng K, Liang M, Yao H, Wang J, Chang Q (2013a) Effect of size-fractionated fish protein hydrolysate on growth and feed utilization of turbot (Scophthalmus maximus L.). Aquacult Res 44:895–902. doi:10.1111/j.1365-2109.2012.03094.x

    Article  CAS  Google Scholar 

  • Zheng K, Xu T, Qian C, Liang M, Wang X (2013b) Effect of low molecular weight fish protein hydrolysate on growth performance and IGF-I expression in Japanese flounder (Paralichthys olivaceus) fed high plant protein diets. Aquacult Nutr 20:372–380. doi:10.1111/anu.12090

    Article  CAS  Google Scholar 

  • Zhou QC, Wu ZH, Tan BP, Chi SY, Yang QH (2006) Optimal dietary methionine requirement for juvenile cobia (Rachycentron canadum). Aquaculture 258:551–557. doi:10.1016/j.aquaculture.2006.03.035

    Article  CAS  Google Scholar 

  • Zietek T, Daniel H (2015) Intestinal nutrient sensing and blood glucose control. Curr Opin Clin Nutr Metab Care 18:381–388. doi:10.1097/MCO.0000000000000187

    Article  CAS  PubMed  Google Scholar 

  • Zucchelli M, Torkvist L, Bresso F, Halfvarson J, Hellquist A, Anedda F, Assadi G, Lindgren GB, Svanfeldt M, Janson M, Noble CL, Pettersson S, Lappalainen M, Paavola-Sakki P, Halme L, Färkkilä M, Turunen U, Satsangi J, Kontula K, Löfberg R, Kere J, D’Amato M (2009) PepT1 oligopeptide transporter (SLC15A1) gene polymorphism in inflammatory bowel disease. Inflamm Bowel Dis 15:1562–1569. doi:10.1002/ibd.20963

    Article  PubMed  Google Scholar 

  • Zwarycz B, Wong EA (2013) Expression of the peptide transporters PepT1, PepT2, and PHT1 in the embryonic and posthatch chick. Poult Sci 92:1314–1321. doi:10.3382/ps.2012-02826

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to express our deep gratitude to Prof. Ian Hume for the invitation to write this review. This work was mainly supported by Grants from the University of Salento (Fondi ex-60%).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziano Verri.

Additional information

Communicated by I. D. Hume.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verri, T., Barca, A., Pisani, P. et al. Di- and tripeptide transport in vertebrates: the contribution of teleost fish models. J Comp Physiol B 187, 395–462 (2017). https://doi.org/10.1007/s00360-016-1044-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-016-1044-7

Keywords

Navigation