Skip to main content
Log in

The effects of acute cold exposure on morphology and gene expression in the heart of neonatal chicks

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Cold exposure induces an increase in blood flow and blood pressure, and long-term exposure to cold causes cardiac hypertrophy. Neonatal chicks (Gallus gallus domesticus) are highly sensitive to cold exposure, because their capacity for thermogenesis is immature until 1 week after hatching. Hence, we hypothesized that the heart of chicks at around 1 week of age acutely responds to cold environment. To investigate the effect of acute (24 h) and long-term (2 weeks) cold on the heart of chicks, 7-day-old chicks were exposed to cold temperature (4 °C) or kept warm (30 °C). Chicks exposed to the cold showed cardiac hypertrophy with marked left ventricular (LV) chamber dilation and wall thickening. On the other hand, long-term cold exposure (2 weeks from 7-day-old) induced an increase in total ventricular mass, but not in LV morphological parameters. Then, we investigated the details of acute cardiac hypertrophy in chicks. Electron microscopy revealed that cardiomyocytes in the hypertrophied LV had enlarged mitochondria with less dense cristae. Although the mRNA expression of lipoprotein lipase in the LV of the cold-exposed chicks significantly increased, the mRNA expression of genes involved in fatty acid β-oxidation did not change in response to cold exposure. In addition, the mRNA expression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha, which enhances mitochondrial biogenesis and function under physiological cardiac hypertrophy, increased in LV of cold-exposed chicks. The study found that acute cold exposure to neonatal chicks induces LV hypertrophy. However, these results suggest that acute cold exposure to chicks might induce both adaptive and maladaptive responses of the LV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LV:

Left ventricle

BM:

Body mass

VM:

Total ventricular mass

LPL:

Lipoprotein lipase

CPT-1A:

Carnitine palmitoyltransferase IA

3-HADH:

3-Hydroxyacyl-CoA dehydrogenase

FAS:

Fatty acid synthase

SOD:

Superoxide dismutase

GPx:

Glutathione peroxidase

PGC-1α:

Peroxisome proliferator-activated receptor gamma coactivator-1 alpha

TNF-α:

Tumor necrosis factor-alpha

TG:

Triacylglycerol

References

  • Abel ED, Doenst T (2011) Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy. Cardiovasc Res 90(2):234–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banister EW, Tomanek RJ, Cvorkov N (1971) Ultrastructural modifications in rat heart: responses to exercise and training. Am J Physiol 220:1935–1940

    CAS  PubMed  Google Scholar 

  • Bello Roufai M, Li H, Sun Z (2007) Heart-specific inhibition of protooncogene c-myc attenuates cold-induced cardiac hypertrophy. Gene Ther 14:1406–1416

    Article  CAS  PubMed  Google Scholar 

  • Bozkurt B, Kribbs SB, Clubb FJ Jr, Michael LH, Didenko VV, Hornsby PJ, Seta Y, Oral H, Spinale FG, Mann DL (1998) Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation 97:1382–1391

    Article  CAS  PubMed  Google Scholar 

  • Burelle Y, Wambolt RB, Grist M, Parsons HL, Chow JC, Antler C, Bonen A, Keller A, Dunaway GA, Popov KM, Hochachka PW, Allard MF (2004) Regular exercise is associated with a protective metabolic phenotype in the rat heart. Am J Physiol Heart Circ Physiol 287:H1055–H1063

    Article  CAS  PubMed  Google Scholar 

  • Caimari A, Oliver P, Palou A (2012) Adipose triglyceride lipase expression and fasting regulation are differently affected by cold exposure in adipose tissues of lean and obese Zucker rats. J Nutr Biochem 23:1041–1050

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Tian X, Song L (1995) Biochemical and biophysical characteristics of mitochondria in the hypertrophic hearts from hypertensive rats. Chin Med J (Engl) 108:361–366

    CAS  Google Scholar 

  • Cheng Y, Hauton D (2008) Cold acclimation induces physiological cardiac hypertrophy and increases assimilation of triacylglycerol metabolism through lipoprotein lipase. Biochim Biophys Acta 1781:618–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deaton JW, Reece FN, McNally EH, Tarver WJ (1969) Liver, heart and adrenal weights of broilers reared under constant temperatures. Poult Sci 48:283–288

    Article  CAS  PubMed  Google Scholar 

  • Depocas F (1961) Biochemical changes in exposure and acclimation to cold environments. Br Med Bull 17:25–31

    CAS  PubMed  Google Scholar 

  • Duchamp C, Rouanet JL, Barre H (2002) Ontogeny of thermoregulatory mechanisms in king penguin chicks (Aptenodytes patagonicus). Comp Biochem Physiol A Physiol 131:765–773

    Article  Google Scholar 

  • Flick DF (1967) Effects of age and diet on the heart rate of the developing cockerel. Poult Sci 46(4):889–894

    Article  CAS  PubMed  Google Scholar 

  • Haudek SB, Taffet GE, Schneider MD, Mann DL (2007) TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. J Clin Invest 117:2692–2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higuchi Y, Otsu K, Nishida K, Hirotani S, Nakayama H, Yamaguchi O, Matsumura Y, Ueno H, Tada M, Hori M (2002) Involvement of reactive oxygen species-mediated NF-kappa B activation in TNF-alpha-induced cardiomyocyte hypertrophy. J Mol Cell Cardiol 34:233–240

    Article  CAS  PubMed  Google Scholar 

  • Hilfiker-Kleiner D, Landmesser U, Drexler H (2006) Molecular Mechanisms in Heart Failure. J Am Coll Cardiol 48:A56–A66

    Article  CAS  Google Scholar 

  • Hirabayashi M, Ijiri D, Kamei Y, Tajima A, Kanai Y (2005) Transformation of skeletal muscle from fast- to slow-twitch during acquisition of cold tolerance in the chick. Endocrinology 146:399–405

    Article  CAS  PubMed  Google Scholar 

  • Hohtola E (2002) Facultative and obligatory thermogenesis in young birds: a cautionary note. Comp Biochem Physiol A Physiol 131:733–739

    Article  Google Scholar 

  • Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115:547–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston DW (1971) The absence of brown adipose tissue in birds. Comp Biochem Physiol A Comp Physiol 40(4):1107–1108

    Article  CAS  PubMed  Google Scholar 

  • Karlinger JS, Williams D, Gorwit J, Crawford MH, O’Rourke RA (1977) Left ventricular performance in patients with left ventricular hypertrophy caused by systemic arterial hypertension. Br Heart J 39:1239–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Park K, Yoo E, Kim Y, Kim Y, Kim H, Kim HT, Park J, Lee K, Jang WG, Kim J, Kim B, Lee I (2007) Effects of PGC-1alpha on TNF-alpha-induced MCP-1 and VCAM-1 expression and NF-kappaB activation in human aortic smooth muscle and endothelial cells. Antioxid Redox Signal 9:301–307

    Article  CAS  PubMed  Google Scholar 

  • Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106:847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine ND, Rockoff SD, Braunwald E (1963) An angiocardiographic analysis of the thickness of the left ventricular wall and cavity in aortic stenosis and other valvular lesions. Hemodynamic–angiographic correlations in patients with obstruction to left ventricular outflow. Circulation 28:339–345

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Xu X, Hu X, Fassett J, Zhu G, Tao Y, Li J, Huang Y, Zhang P, Zhao B, Chen Y (2010) PGC-1 alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload. Antioxid Redox Signal 13(7):1011–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maillet M, van Berlo JH, Molkentin JD (2013) Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol 14:38–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May JD, Deaton JW, Reece FN, Mitlin N, Kubena LF (1971) The effect of environmental temperature on blood volume. Poult Sci 50:1867–1870

    Article  CAS  PubMed  Google Scholar 

  • Morganroth J, Maron BJ, Henry WL, Epstein SE (1975) Comparative left ventricular dimensions in trained athletes. Ann Intern Med 82:521–524

    Article  CAS  PubMed  Google Scholar 

  • Nakatani M, McMurray WC (1968) Reversal of mitochondrial swelling associated with fatty acid oxidation. II. Effects of cytochrome c and carnitine on contraction of fatty acid swollen mitochondria. Can J Biochem 46(9):1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Nichelmann M, Tzschentke B (2002) Ontogeny of thermoregulation in precocial birds. Comp Biochem Physiol A Physiol 131:751–763

    Article  Google Scholar 

  • Ohtsuka A, Kawatomi N, Nakashima K, Araki T, Hayashi K (2011) Gene expression of muscle-specific ubiquitin ligase, atrogin-1/MAFbx, positively correlates with skeletal muscle proteolysis in food-deprived broiler chickens. J Poult Sci 48:92–96

    Article  CAS  Google Scholar 

  • Olson JM (1994) The ontogeny of shivering thermogenesis in the red-winged blackbird (Agelaius phoeniceus). J Exp Biol 191:59–88

    PubMed  Google Scholar 

  • Olson JM (2001) Ontogeny of catabolic and morphological properties of skeletal muscle of the red-winged blackbird (Agelaius phoeniceus). J Comp Physiol B Biochem Mol Biol 171:527–542

    CAS  Google Scholar 

  • Patten IS, Arany Z (2012) PGC-1 coactivators in the cardiovascular system. Trends Endocrinol Metab 23(2):90–97

    Article  CAS  PubMed  Google Scholar 

  • Rasbach KA, Schnellmann RG (2007) PGC-1alpha over-expression promotes recovery from mitochondrial dysfunction and cell injury. Biochem Biophys Res Commun 355:734–739

    Article  CAS  PubMed  Google Scholar 

  • Richey PA, Brown SP (1998) Pathological versus physiological left ventricular hypertrophy: a review. J Sports Sci 16:129–141

    Article  CAS  PubMed  Google Scholar 

  • Rogers MP, Robinson DS (1974) Effects of cold exposure on heart clearing factor lipase and triglyceride utilization in the rat. J Lipid Res 15:263–272

    CAS  PubMed  Google Scholar 

  • Rowe GC, Jiang A, Arany Z (2010) PGC-1 coactivators in cardiac development and disease. Circ Res 107:825–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilling J, Kelly DP (2011) The PGC-1 cascade as a therapeutic target for heart failure. J Mol Cell Cardiol 51:578–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada K, Koide H (1978) Effects of age, light regimes and food removal on development of daily rhythmicity in chick heart rate. Poult Sci 57(1):271–276

    Article  CAS  PubMed  Google Scholar 

  • Smith SH, Kramer MF, Reis I, Bishop SP, Ingwall JS (1990) Regional changes in creatine kinase and myocyte size in hypertensive and nonhypertensive cardiac hypertrophy. Circ Res 67:1334–1344

    Article  CAS  PubMed  Google Scholar 

  • Templeman NM, Beaudry JL, Le Moine CM, McClelland GB (2010) Chronic hypoxia- and cold-induced changes in cardiac enzyme and gene expression in CD-1 mice. Biochim Biophys Acta 1800:1248–1255

    Article  CAS  PubMed  Google Scholar 

  • Unger RH (2003) The physiology of cellular liporegulation. Annu Rev Physiol 65:333–347

    Article  CAS  PubMed  Google Scholar 

  • Ventura-Clapier R, Garnier A, Veksler V (2008) Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res 79:208–217

    Article  CAS  PubMed  Google Scholar 

  • Weiss JN, Korge P, Honda HM, Ping P (2003) Role of the mitochondrial permeability transition in myocardial disease. Circ Res 93(4):292–301

    Article  CAS  PubMed  Google Scholar 

  • Wu DJ, Lin JA, Chiu YT, Cheng CC, Shyu CL, Ueng KC, Huang CY (2003) Pathological and biochemical analysis of dilated cardiomyopathy of broiler chickens—an animal model. Chin J Physiol 46:19–26

    PubMed  Google Scholar 

  • Yamagishi M, Ito E, Matsuo R (2011) DNA endoreplication in the brain neurons during body growth of an adult slug. J Neurosci 31:5596–5604

    Article  CAS  PubMed  Google Scholar 

  • Yoneta H, Dzialowski EM, Burggren WW, Tazawa H (2007) Endothermic heart rate response in broiler and White Leghorn chicks (Gallus gallus domesticus) during the first two days of post-hatch life. Comp Biochem Physiol A Mol Integr Physiol 147(2):529–535

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. A. Tajima for technical information on the breeding of chicks. This study was supported by a Grant-in-Aid for Young Scientists (B) (No. 18780216) from The Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daichi Ijiri.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Communicated by H.V. Carey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsubara, T., Shimamoto, S., Ijiri, D. et al. The effects of acute cold exposure on morphology and gene expression in the heart of neonatal chicks. J Comp Physiol B 186, 363–372 (2016). https://doi.org/10.1007/s00360-015-0957-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-015-0957-x

Keywords

Navigation