Skip to main content
Log in

Scaling of standard metabolic rate in estuarine crocodiles Crocodylus porosus

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Standard metabolic rate (SMR, ml O2 min−1) of captive Crocodylus porosus at 30 °C scales with body mass (kg) according to the equation, SMR = 1.01 M0.829, in animals ranging in body mass of 3.3 orders of magnitude (0.19–389 kg). The exponent is significantly higher than 0.75, so does not conform to quarter-power scaling theory, but rather is likely an emergent property with no single explanation. SMR at 1 kg body mass is similar to the literature for C. porosus and for alligators. The high exponent is not related to feeding, growth, or obesity of captive animals. The log-transformed data appear slightly curved, mainly because SMR is somewhat low in many of the largest animals (291–389 kg). A 3-parameter model is scarcely different from the linear one, but reveals a declining exponent between 0.862 and 0.798. A non-linear model on arithmetic axes overestimates SMR in 70 % of the smallest animals and does not satisfactorily represent the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrews RM, Pough FH (1985) Metabolism of squamate reptiles: allometric and ecological relationships. Physiol Zoo 58:214–231

    Google Scholar 

  • Anonymous (2009) Code of practice on the humane treatment of wild and farmed Australian crocodiles. The Natural Resource Management Ministerial Council, Australia, pp 1–23

    Google Scholar 

  • Aoyagi Y, Tasaki I, Okumura J-I, Muramatsu T (1988) Energy cost of whole-body protein synthesis measured in vivo in chicks. Compara Biochem Physiol A 91:765–768

    Article  CAS  Google Scholar 

  • Bates L (2001) Chemical restraint of saltwater crocodiles, Crocodylus porosus: a review, and the testing of the Immobilising Agent-Panacuronium Bromide. Murdoch University, Australia

    Google Scholar 

  • Bennett AF, Dawson WR (1976) Metabolism. In: Gans C, Dawson WR (eds) Physiology A. Adademic Press, London, pp 127–223

    Google Scholar 

  • Bennett AF, Seymour RS, Bradford DF, Webb GJW (1985) Mass-dependence of anaerobic metabolism and acid-base disturbance during activity in the salt-water crocodile, Crocodylus porosus. J Exp Biol 118:161–171

    Google Scholar 

  • Brody S (1945) Bioenergetics and Growth. Reinhold Publishing Corporation, New York

    Google Scholar 

  • Brown CR, Cameron JN (1991) The induction of specific dynamic action in channel catfish by infusion of essential amino acids. Physiol Zoo 64:276–297

    CAS  Google Scholar 

  • Brown JH, West GB (eds) (2000) Scaling in Biology. Oxford University Press, Oxford

    Google Scholar 

  • Calder WA III (1996) Size, function, and life history. Dover Publications, Mineola

    Google Scholar 

  • Chappell MA, Ellis TM (1987) Resting metabolic rates in boid snakes: allometric relationships and temperature effects. J Comp Physiol B-Biochem Sys Environ Physiol 157:227–235

    Article  CAS  Google Scholar 

  • Chaui-Berlinck JG (2006) A critical understanding of the fractal model of metabolic scaling. J Exp Biol 209:3045–3054

    Article  PubMed  Google Scholar 

  • Coulson RA, Hernandez T (1979) Increase in metabolic rate of the alligator fed proteins or amino acids. J Nutr 109:538–550

    PubMed  CAS  Google Scholar 

  • Coulson RA, Herbert JD, Coulson TD (1989) Biochemistry and physiology of alligator metabolism in vivo. Am Zool 29:921–934

    Google Scholar 

  • Darveau CA, Suarez RK, Andrews RD, Hochachka PW (2002) Allometric cascade as a unifying principle of body mass effects on metabolism. Nature 417:166–170

    Article  PubMed  CAS  Google Scholar 

  • Emshwiller MG, Gleeson TD (1997) Temperature effects on aerobic metabolism and terrestrial locomotion in American alligators. J Herpetol 31:142–147

    Article  Google Scholar 

  • Farmer CG, Carrier DR (2000) Ventilation and gas exchange during recovery from treadmill-locomotion in the American alligator (Alligator mississippiensis). Respir Physiol 120:67–73

    Article  Google Scholar 

  • Franklin CE, Davis BM, Peucker SKJ, Stephenson H, Mayer R, Whittier J, Lever J, Grigg GC (2003) Comparison of stress induced by manual restraint and immobilisation in the estuarine crocodile, Crocodylus porosus. J Exp Zoo A Comp Exp Biol 298A:86–92

    Article  Google Scholar 

  • Gienger CM, Tracy CR, Brien ML, Manolis SC, Webb GJW, Seymour RS, Christian KA (2012) Energetic costs of digestion in Australian crocodiles. Australian J Zoo 59:416–421

    Article  Google Scholar 

  • Glazier DS (2005) Beyond the ‘3/4-power law’: variation in the intra- and interspecific scaling of metabolic rate in animals. Biol Rev 80:611–662

    Article  PubMed  Google Scholar 

  • Glazier DS (2009) Activity affects intraspecific body-size scaling of metabolic rate in ectothermic animals. J Comp Physiol B 179:821–828

    Article  PubMed  Google Scholar 

  • Glazier DS (2010) A unifying explanation for diverse metabolic scaling in animals and plants. Biol Rev 85:111–138

    Article  PubMed  Google Scholar 

  • Grigg GC (1978) Metabolic rate, Q10 and respiratory quotient (RQ) in Crocodylus porosus, and some generalizations about low RQ in reptiles. Physiol Zoo 51:354–360

    Google Scholar 

  • Hemmingsen AM (1960) Energy metabolism as related to body size and respiratory surfaces, and its evolution. Rep Steno Memorial Hosp Nordisk Insulin lab 9:1–110

    Google Scholar 

  • Heusner AA (1982) Energy metabolism and body size. I. Is the 0.75 mass exponent of Kleiber’s equation a statistical artifact? Respir Physiol 48:1–12

    Article  PubMed  CAS  Google Scholar 

  • Hughes GM, Gaymer R, Moore M, Woakes AJ (1971) Respiratory exchange and body size in the Aldabra giant tortoise. J Exp Biol 55:651–665

    PubMed  CAS  Google Scholar 

  • Kerkhoff AJ, Enquist BJ (2009) Multiplicative by nature: why logarithmic transformation is necessary in allometry. J Theor Biol 257:519–521

    Article  Google Scholar 

  • Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–349

    CAS  Google Scholar 

  • Kozłowski J, Konarzewski M (2005) West, Brown and Enquist’s model of allometric scaling again: the same questions remain. Funct Ecol 19:739–743

    Article  Google Scholar 

  • Lighton JRB (2008) Measuring metabolic rates: a manual for scientists. Oxford University Press, Oxford

    Book  Google Scholar 

  • Lovegrove BG (2000) The zoogeography of mammalian basal metabolic rate. Am Nat 156:201–219

    Article  PubMed  Google Scholar 

  • Makarieva A, Gorshkov VG, Li B-L (2006) Distributive network model of Banavar, Damuth, Maritan and Rinaldo (2002): critique and perspective. J Theor Biol 239:394–397

    Article  PubMed  Google Scholar 

  • McKechnie AE, Freckleton RP, Jetz W (2006) Phenotypic plasticity in the scaling of avian basal metabolic rate. Proc Biol Sci 273:931–937

    Article  PubMed  Google Scholar 

  • McNab BK (2008) An analysis of the factors that influence the level and scaling of mammalian BMR. Comp Biochem Physiol A: Mol Integr Physiol 151:5–28

    Article  Google Scholar 

  • Munns SL, Hartzler LK, Bennett AF, Hicks JW (2005) Terrestrial locomotion does not constrain venous return in the American alligator, Alligator mississippiensis. J Exp Biol 208:3331–3339

    Article  PubMed  Google Scholar 

  • Owerkowicz T, Baudinette RV (2008) Exercise training enhances aerobic capacity in juvenile estuarine crocodiles (Crocodylus porosus). Comp Biochem Physiol A: Mol Integr Physiol 150:211–216

    Article  Google Scholar 

  • Packard GC (2009) On the use of logarithmic transformations in allometric analyses. J Theor Biol 257:515–518

    Article  PubMed  Google Scholar 

  • Peucker SKJ, Davis BM, van Barneveld RJ (2005) Crocodile farming research: hatching to harvest. Rural Industries Research and Development Corporation, Kingston, ACT, Australia

    Google Scholar 

  • Prange HD, Jackson DC (1976) Ventilation, gas exchange and metabolic scaling of a sea turtle. Respir Physiol 27:369–377

    Article  PubMed  CAS  Google Scholar 

  • Reeds PJ, Wahle KWJ, Haggarty P (1982) Energy costs of protein and fatty acid synthesis. Proc Nutr Soc 41:155–159

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling: why is animal size so important?. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Secor SM (2009) Specific dynamic action: a review of the postprandial metabolic response. J Comp Physiol B 179:1–56

    Article  PubMed  Google Scholar 

  • Starck JM, Cruz-Neto AP, Abe AS (2007) Physiological and morphological responses to feeding in broad-nosed caiman (Caiman latirostris). J Exp Biol 210:2033–2045

    Article  PubMed  Google Scholar 

  • Suarez RK, Darveau CA (2005) Multi-level regulation and metabolic scaling. J Exp Biol 208:1627–1634

    Article  PubMed  Google Scholar 

  • Thompson GG, Heger NA, Heger TG, Withers PC (1995) Standard metabolic rate of the largest Australian lizard, Varanus giganteus. Comp Biochem Physiol A: Mol Integr Physiol 111:603–608

    Article  Google Scholar 

  • Webb G, Messel H (1978) Morphometric analysis of Crocodylus porosus from the north coast of Arnhem Land, northern Australia. Australian J Zoo 26:1–27

    Article  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  PubMed  CAS  Google Scholar 

  • White CR (2011) Allometric estimation of metabolic rates in animals. Comp Biochem Physiol A: Mol Integr Physiol 158:346–357

    Article  Google Scholar 

  • White CR, Seymour RS (2003) Mammalian basal metabolic rate is proportional to body mass2/3. Proc Natl Acad Sci 100:4046–4049

    Article  PubMed  CAS  Google Scholar 

  • White CR, Seymour RS (2005) Sample size and mass range effects on the allometric exponent of basal metabolic rate. Comp Biochem Physiol A: Mol Integr Physiol 142:74–78

    Article  Google Scholar 

  • White CR, Seymour RS (2011) Physiological functions that scale to body mass in fish. In: Farrell AP (ed) Encyclopedia of fish physiology: from genome to environment. Academic Press, San Diego, pp 1573–1582

    Chapter  Google Scholar 

  • White CR, Phillips NF, Seymour RS (2006) The scaling and temperature dependence of vertebrate metabolism. Biol Lett 2:125–127

    Article  PubMed  Google Scholar 

  • White CR, Cassey P, Blackburn TM (2007) Allometric exponents do not support a universal metabolic allometry. Ecology 88:315–323

    Article  PubMed  Google Scholar 

  • White CR, Blackburn TM, Seymour RS (2009) Phylogenetically informed analysis of the allometry of mammalian basal metabolic rate supports neither geometric nor quarter-power scaling. Evolution 63:2658–2667

    Article  PubMed  Google Scholar 

  • Withers PC (1977) Measurement of \(\dot{\text V}\) o 2, \(\dot{\text V}\) co 2, and evaporative water loss with a flow-through mask. J Appl Physiol 42:120–123

    PubMed  CAS  Google Scholar 

  • Withers PC (2001) Design, calibration and calculation for flow-through respirometry systems. Aust J Zool 49:445–461

    Article  Google Scholar 

  • Wood SC, Johansen K, Glass ML, Malioy GMO (1978) Aerobic metabolism of the lizard Varanus exanthematicus: effects of activity, temperature, and size. J Comp Physiol 127:331–336

    Google Scholar 

  • Wright JC (1986) Effects of body temperature, mass, and activity on aerobic and anaerobic metabolism in juvenile Crocodylus porosus. Physiol Zoo 59:505–513

    CAS  Google Scholar 

  • Xiao X, White EP, Hooten MB, Durham SL (2011) On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology 92:1887–1894

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Australian Research Council linkage grant (LP0882478), the Rural Industries Research and Development Corporation, the Northern Territory Research and Innovation Fund, and Wildlife Management International for funding. We are grateful to staff at WMI for technical support, including J. Carrigan, S. Coulson, D. Ottway and J. Pomeroy, who helped build the respirometry chambers and handle the animals. We thank Gordon Grigg for commenting on a draft and supplying references, Gary Packard for carrying out the non-linear regression, Craig White for analytical advice and Doug Glazier and two referees for comments on early versions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger S. Seymour.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seymour, R.S., Gienger, C.M., Brien, M.L. et al. Scaling of standard metabolic rate in estuarine crocodiles Crocodylus porosus . J Comp Physiol B 183, 491–500 (2013). https://doi.org/10.1007/s00360-012-0732-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-012-0732-1

Keywords

Navigation