Skip to main content
Log in

The effects of gill remodeling on transepithelial sodium fluxes and the distribution of presumptive sodium-transporting ionocytes in goldfish (Carassius auratus)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Goldfish, Carassius auratus, adaptively remodel their gills in response to changes in ambient oxygen and temperature, altering the functional lamellar surface area to balance the opposing requirements for respiration and osmoregulation. In this study, the effects of thermal- and hypoxia-mediated gill remodeling on branchial Na+ fluxes and the distribution of putative Na+-transporting ionocytes in goldfish were assessed. When assessed either in vitro (isolated gill arches) or in vivo at a common water temperature, the presence of an interlamellar cell mass (ILCM) in fish acclimated to 7°C clearly decreased Na+ efflux across the gill relative to fish maintained at 25°C and lacking an ILCM. However, loss of the ILCM in 7°C-acclimated fish exposed to hypoxia led to a decrease in Na+ efflux (assessed under hypoxic conditions) despite the apparent large increases in functional lamellar surface area. Goldfish possessing an ILCM were able to sustain Na+ uptake, albeit at a lower rate matched to efflux, owing to the re-distribution of ionocytes expressing genes thought to be involved in Na+ uptake [Na+/H+ exchanger isoform 3 (NHE3) and V- type H+-ATPase] to the edge of the ILCM where they can establish contact with the surrounding environment. NHE-expressing cells co-localized with Na+/K+-ATPase expression, suggesting a role for NHE in Na+-uptake in the goldfish. Implications of the ILCM on ion fluxes in the goldfish are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Avella M, Bornancin M (1989) A new analysis of ammonia and sodium transport through the gills of the freshwater rainbow trout (Salmo gairdneri). J Exp Biol 142:155–175

    Google Scholar 

  • Barron MG, Tarr BD, Hayton WL (1987) Temperature-dependence of cardiac output and regional blood flow in rainbow trout, Salmo gairdneri. J Fish Biol 31:735–744

    Article  Google Scholar 

  • Burgess DW, Marshall WS, Wood CM (1998) Ionic transport by the opercular epithelia of freshwater acclimated tilapia (Oreochromis niloticus) and killifish (Fundulus heteroclitus). Comp Biochem Physiol 121A:155–164

    CAS  Google Scholar 

  • Burggren WW (1982) Air gulping improves blood oxygen transport during aquatic hypoxia in the goldfish Carassius auratus. Physiol Zool 55:327–334

    Google Scholar 

  • Catlett RH, Millich DR (1976) Intracellular and extracellular osmoregulation of temperature acclimated goldfish Carassius auratus L. Comp Biochem Physiol 55:261–269

    Article  CAS  Google Scholar 

  • Edwards SL, Weakley JC, Diamandouros AW, Claiborne JB (2010) Molecular identification of Na+-H+ exchanger isoforms (NHE2) in the gills of the euryhaline teleost Fundulus heteroclitus. J Fish Biol 76:415–426

    Google Scholar 

  • Evans DH (2008) Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith and Ancel Keys. Am J Physiol 295:R704–R713

    CAS  Google Scholar 

  • Fu SJ, Brauner CJ, Cao ZD, Richards JG, Peng JL, Dhillon R, Wang YX (2011) The effect of acclimation to hypoxia and sustained exercise on subsequent hypoxia tolerance and swimming performance in goldfish (Carassius auratus). J Exp Biol 214:2080–2088

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez RJ, McDonald DG (1994) The relationship between oxygen uptake and ion loss in fish from diverse habitats. J Exp Biol 190:95–108

    PubMed  Google Scholar 

  • Hochachka PW (1986) Defense strategies against hypoxia and hypothermia. Science 231:234–241

    Article  PubMed  CAS  Google Scholar 

  • Houston AH, Madden JA (1968) Environmental temperature and plasma electrolyte regulation in the carp, Cyprinus carpio. Nature 217:969–970

    Article  CAS  Google Scholar 

  • Houston AH, Mearow KM (1982) Branchial and renal (Na+/K+) ATPase and carbonic anhydrase activities in a eurythermal freshwater teleost, Carassius auratus L. Comp Biochem Physiol 71:175–180

    Article  CAS  Google Scholar 

  • Hughes GM (1966) The dimension of fish gills in relation to their function. J Exp Biol 45:177–195

    PubMed  CAS  Google Scholar 

  • Hwang P-P (2009) Ion uptake and acid secretion in zebrafish (Danio rerio). J Exp Biol 212:1745–1752

    Article  PubMed  CAS  Google Scholar 

  • Lahlou B, Henderson IW, Sawyer WH (1969) Sodium exchanges in goldfish (Carassius auratus L) adapted to a hypertonic saline solution. Comp Biochem Physiol 28:1427–1433

    Article  PubMed  CAS  Google Scholar 

  • Lomholt JP, Johansen K (1979) Hypoxia acclimation in carp: how it affects O2 uptake, ventilation, and O2 extraction from water. Physiol Zool 52:38–49

    Google Scholar 

  • Lutz PL, Nilsson GE (1997) Contrasting strategies for anoxic brain survival—glycolysis up or down. J Exp Biol 200:411–419

    PubMed  CAS  Google Scholar 

  • Mackay WC (1974) Effect of temperature on osmotic and ionic regulation in goldfish, Carassius auratus L. J Comp Physiol 88:1–19

    Article  CAS  Google Scholar 

  • Maetz J (1956) Les échanges de sodium chez le poisson Carassius auratus L. Action d’un inhibiteur de l’anhydrase carbonique. J Physiol (Paris) 48:1085–1099

    CAS  Google Scholar 

  • Maetz J, Garcia-Romeu F (1964) The mechanism of sodium and chloride uptake by the gills of a fresh-water fish, Carassius auratus: II. Evidence for NH4 +/Na+ and HCO3 /Cl exchanges. J Gen Physiol 47:1209–1227

  • Mandic M, Lau GY, Nijjar MMS, Richards JG (2008) Metabolic recovery in goldfish: a comparison of recovery from severe hypoxia exposure and exhaustive exercise. Comp Biochem Physiol C 148:332–338

    Google Scholar 

  • Matey V, Richards JG, Wang Y, Wood CM, Rogers J, Davies R, Murray BW, Chen X-Q, Du J, Brauner CJ (2008) The effect of hypoxia on gill morphology and ionoregulatory status in the Lake Qinghai scaleless carp, Gymnocypris przewalskii. J Exp Biol 211:1063–1074

    Article  PubMed  CAS  Google Scholar 

  • Mitrovic D, Perry SF (2009) The effects of thermally induced gill remodeling on ionocyte distribution and branchial chloride fluxes in goldfish (Carassius auratus). J Exp Biol 212:843–852

    Article  PubMed  CAS  Google Scholar 

  • Mitrovic D, Dymowska A, Nilsson GE, Perry SF (2009) Physiological consequences of gill remodeling in goldfish (Carassius auratus) during exposure to long-term hypoxia. Am J Phyiol 297:R224–R234

    CAS  Google Scholar 

  • Murphy PG, Houston AH (1973) Environmental temperature and the body fluid system of the fresh-water teleost—plasma electrolyte levels and branchial microsomal (Na+-K+) ATPase activity in the thermally acclimated goldfish (Carassius auratus). Comp Biochem Physiol 47:563–570

    Google Scholar 

  • Nilsson S (1986) Gill blood flow control. In: Nilsson S, Holmgren S (eds) Fish physiology: recent advances. Croom Helm, London, pp 86–101

    Chapter  Google Scholar 

  • Nilsson GE (2007) Gill remodeling in fish—a new fashion or ancient secret? J Exp Biol 210:2403–2409

    Article  PubMed  Google Scholar 

  • Parks SK, Tresguerres M, Goss GG (2008) Theoretical considerations underlying Na+ uptake mechanisms in freshwater fishes. Comp Biochem Physiol 148C:411–418

    CAS  Google Scholar 

  • Paxton R, Umminger BL (1983) Altered activities of branchial and renal Na/K- and Mg-ATPases in cold-acclimated goldfish (Carassius auratus). Comp Biochem Physiol 74B:503–506

    CAS  Google Scholar 

  • Perry SF (1997) The chloride cell: structure and function in the gills of freshwater fishes. Ann Rev Physiol 59:325–347

    Article  CAS  Google Scholar 

  • Perry SF, Gilmour KM (2006) Acid-base balance and CO2 excretion in fish: unanswered questions and emerging models. Respir Physiol Neurobiol 154:199–215

    Article  PubMed  CAS  Google Scholar 

  • Perry SF, Furimsky M, Bayaa M, Georgalis T, Nickerson JG, Moon TW (2003) Integrated involvement of Na +/HCO3 cotransporters and V-type H+-ATPase in branchial and renal acid-base regulation in freshwater fishes. Biochem Biophys Acta 1618:175–184

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Preest MR, Gonzalez RJ, Wilson RW (2005) A pharmacological examination of Na+ and Cl transport in two species of freshwater fish. Physiol Biochem Zool 78:259–272

    Article  PubMed  CAS  Google Scholar 

  • Prosser CL, Mackay W, Kato K (1970) Osmotic and ionic concentrations in some Alaskan fish and goldfish from different temperatures. Physiol Zool 43:81–89

    CAS  Google Scholar 

  • Randall DJ, Baumgarten D, Malyusz M (1972) The relationship between gas and ion transfer across the gills of fishes. Comp Biochem Physiol 41:629–637

    Article  CAS  Google Scholar 

  • Russell JC, Chambers MM (1976) Comparative temperature dependence of (Na+ + K+)-ATPase. Physiol Chem Phys 8:237–251

    PubMed  CAS  Google Scholar 

  • Sardella BA, Cooper J, Gonzalez RJ, Brauner CJ (2004) The effect of temperature on juvenile Mozambique tilapia hybrids (Oreochromis mossambicus × O. urolepis hornorum) exposed to full-strength and hypersaline seawater. Comp Biochem Physiol 137:621–629

    Article  Google Scholar 

  • Smith A, Zhang J, Guay D, Quint E, Johnson A, Akimenko MA (2008) Gene expression analysis on sections of zebrafish regenerating fins reveals limitations in the whole-mount in situ hybridization method. Dev Dyn 237:417–425

    Article  PubMed  CAS  Google Scholar 

  • Sollid J, Nilsson GE (2006) Plasticity of respiratory structures—adaptive remodeling of fish gills induced by ambient oxygen and temperature. Respir Physiol Neurobiol 154:241–251

    Article  PubMed  CAS  Google Scholar 

  • Sollid J, De Angelis P, Gundersen K, Nilsson GE (2003) Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills. J Exp Biol 206:3667–3673

    Article  PubMed  Google Scholar 

  • Sollid J, Weber RE, Nilsson GE (2005) Temperature alters the respiratory surface area of crucian carp (Carassius carassius) and goldfish (Carassius auratus). J Exp Biol 208:1109–1116

    Article  PubMed  Google Scholar 

  • Towle DW, Rushton ME, Heidysch D, Magnani JJ, Rose MJ, Amstutz A, Jordan MK, Shearer DW, Wu WS (1997) Sodium/proton antiporter in the euryhaline crab Carcinus maenas: molecular cloning, expression and tissue distribution. J Exp Biol 200:1003–1014

    PubMed  CAS  Google Scholar 

  • Tzaneva V, Gilmour KM, Perry SF (2010) Respiratory responses to hypoxia or hypercapnia in goldfish (Carassius auratus) experiencing gill remodeling. Respir Physiol Neurobiol 175:112–120

    Article  PubMed  Google Scholar 

  • Tzaneva V, Bailey S, Perry SF (2011) The interactive effects of hypoxemia, hyperoxia and temperature on the gill morphology of goldfish (Carassius auratus). Am J Physiol 300:1344–1351

    Google Scholar 

  • Umminger BL (1969) Patterns of osmoregulation in freshwater fishes at temperatures near freezing. Physiol Zool 44:20–27

    Google Scholar 

  • Watanabe S, Inokuchi M, Maruyama T, Kaneko T (2008) Na+/H+ exchanger isoform 3 expressed in apical membrane of gill mitochondrion-rich cells in Mozambique tilapia Oreochromis mossambicus. Fish Sci 74:813–821

    Article  CAS  Google Scholar 

  • Wood CM (1992) Flux measurements as indices of H+ and metal effects on freshwater fish. Aquat Toxicol 22:239–264

    Article  CAS  Google Scholar 

  • Wood CM, Kajimura M, Sloman KA, Scott GR, Walsh PJ, Amerida-Val VMF, Val AL (2007) Rapid regulation of Na+ fluxes and ammonia excretion in response to acute environmental hypoxia in the Amazonian oscar, Astronotus ocellatus. Am J Physiol 292:R2048–R2058

    CAS  Google Scholar 

  • Wood CM, Iftikar FI, Scott GR, De Boeck G, Sloman KA, Matey V, Domingos FX, Duarte RM, Almeida-Val VMF, Val AL (2009) Regulation of gill transcellular permeability and renal function during acute hypoxia in the Amazonian oscar (Astronotus ocellatus): new angles to the osmorespiratory compromise. J Exp Biol 212:1949–1964

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NSERC of Canada Discovery and Research Tools and Infrastructure grants to SFP. We thank Andrew Ochalski for technical guidance for the microscopy experiments and Bill Fletcher for his dedication to animal care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve F. Perry.

Additional information

Communicated by H.V. Carey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradshaw, J.C., Kumai, Y. & Perry, S.F. The effects of gill remodeling on transepithelial sodium fluxes and the distribution of presumptive sodium-transporting ionocytes in goldfish (Carassius auratus). J Comp Physiol B 182, 351–366 (2012). https://doi.org/10.1007/s00360-011-0618-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-011-0618-7

Keywords