Skip to main content
Log in

Comparative analysis of crystallins and lipids from the lens of Antarctic toothfish and cow

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Animal model systems of senile cataract and lens crystallin stability are essential to understand the complex nature of lens transparency. Our aim in this study was to assess the long-lived Antarctic toothfish Dissostichus mawsoni (Norman) as a model system to understand long-term lens clarity in terms of solubility changes that occur to crystallins. We compared the toothfish with the mammalian model cow lens, dissecting each species’ lens into a cortex and nuclear region. In addition to crystallin distribution, we also assayed fatty acid (FA) composition by negative ion electrospray ionization mass spectrometry (ESI-MS). The majority of toothfish lens crystallins from cortex (90.4%) were soluble, whereas only a third (31.8%) from the nucleus was soluble. Crystallin solubility analysis by SDS-PAGE and immunoblots revealed that relative proportions of crystallins in both soluble and urea-soluble fractions were similar within each species examined and in agreement with previous reports for bovine lens. From our data, we found that both toothfish and cow crystallins follow patterns of insolubility that mirror each animals lens composition with more γ crystallin aggregation seen in the toothfish lens nucleus than in cow. Toothfish lens lipids had a large amount of polyunsaturated fatty acids that were absent in cow resulting in an unsaturation index (I U) four-fold higher than that of cow. We identified a novel FA with a molecular mass of 267 mass units in the lens epithelial layer of the toothfish that accounted for well over 50% of the FA abundance. The unidentified lipid in the toothfish lens epithelia corresponds to either an odd-chain (17 carbons) FA or a furanoid. We conclude that long-lived fishes are likely good animal models of lens crystallin solubility and may model post-translational modifications and solubility changes better than short-lived animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abele D, Puntarulo S (2004) Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol A Mol Integr Physiol 138:405–415

    Article  PubMed  Google Scholar 

  • Ahmed H, Du S, Vasta GR (2009) Knockdown of a galectin-1-like protein in zebrafish (Danio rerio) causes defects in skeletal muscle development. Glycoconj J 26:277–283

    Article  CAS  PubMed  Google Scholar 

  • Asherie N, Pande J, Lomakin A, Ogun O, Hanson SR, Smith JB, Benedek GB (1998) Oligomerization and phase separation in globular protein solutions. Biophys Chem 75:213–227

    Article  CAS  PubMed  Google Scholar 

  • Berbers GAM, Hoekman WA, Bloemendal H, de Jong WW, Kleinschmidt T, Braunitzer G (1983) Proline- and alanine-rich N-terminal extension of the basic bovine b-crystallin B1 chains. FEBS Lett 161:225–229

    Article  CAS  PubMed  Google Scholar 

  • Bindels JG, Bours J, Hoenders HJ (1983) Age-dependent variations in the distribution of rat lens water-soluble crystallins. Size fractionation and molecular weight determination. Mech Ageing Dev 21:1–13

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  PubMed  Google Scholar 

  • Bloemendal H, Berbers GA, De Jong WW, Ramaekers FC, Vermorken AJ, Dunia I, Benedetti EL (1984) Interaction of crystallins with the cytoskeletal-plasma membrane complex of the bovine lens. Ciba Found Symp 106:177–190

    CAS  PubMed  Google Scholar 

  • Bloemendal H, De Jong W, Jaenicke R, Lubsen NH, Slingsby C, Tardieu A (2004) Ageing and vision: structure, stability and function of lens crystallins. Prog Biophys Mol Biol 86:407–485

    Article  CAS  PubMed  Google Scholar 

  • Borchman D, Yappert MC, Afzal M (2004) Lens lipids and maximum lifespan. Exp Eye Res 79:761–768

    Article  CAS  PubMed  Google Scholar 

  • Campbell HA, Fraser KPP, Bishop CM, Peck LS, Egginton S (2008) Hibernation in an antarctic fish: on ice for winter. PLoS One 3:e1743

    Article  PubMed  Google Scholar 

  • Chen J, Chang B, Chen Y, Lin CJ, Wu J, Kuo C (2001) Molecular cloning, developmental expression, and hormonal regulation of Zebrafish (Danio rerio) [beta] crystallin B1, a member of the superfamily of [beta] crystallin proteins. Biochem Biophys Res Commun 285:105–110

    Article  CAS  PubMed  Google Scholar 

  • Chiou SH, Chang WP, Chen SW, Lo CH (1988) N-terminal sequences of gamma-crystallins from the amphibian lens and their homology with gamma-crystallins of other major classes of vertebrates. Int J Pept Protein Res 31:335–338

    Article  CAS  PubMed  Google Scholar 

  • Clarke A, Johnston NM (1999) Scaling of metabolic rate with body mass and temperature in teleost fish. J Anim Ecol 68:893–905

    Article  Google Scholar 

  • Clayton JD, Cripps RM, Sparrow JC, Bullard B (1998) Interaction of troponin-H and glutathione S-transferase-2 in the indirect flight muscles of Drosophila melanogaster. J Muscle Res Cell Motil 19:117–127

    Article  CAS  PubMed  Google Scholar 

  • Coop A, Goode D, Sumner I, Crabbe MJ (1998) Effects of controlled mutations on the N- and C-terminal extensions of chick lens beta B1 crystallin. Graefes Arch Clin Exp Ophthalmol 236:146–150

    Article  CAS  PubMed  Google Scholar 

  • Cvekl A, Piatigorsky J (1996) Lens development and crystallin gene expression: many roles for Pax-6. Bioessays 18:621–630

    Article  CAS  PubMed  Google Scholar 

  • Dahm R, Schonthaler HB, Soehn AS, van Marle J, Vrensen GFJM (2007) Development and adult morphology of the eye lens in the zebrafish. Exp Eye Res 85:74–89

    Article  CAS  PubMed  Google Scholar 

  • Dalsgaard J, St John M, Kattner G, Muller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340

    Article  PubMed  Google Scholar 

  • Danysh BP, Duncan MK (2009) The lens capsule. Exp Eye Res 88:151–164

    Article  CAS  PubMed  Google Scholar 

  • Davson H (1990). In: Davson H (ed) Physiology of the eye. Pergamon Press, Inc, New York

  • Day KR, Jagadeeswaran P (2009) Microarray analysis of prothrombin knockdown in zebrafish. Blood Cell Mol Dis doi:http://dx.doi.org/10.1016/j.bcmd.2009.04.001

  • Delaye M, Tardieu A (1983) Short-range order of crystallin proteins accounts for eye lens transparency. Nature 302:415–417

    Article  CAS  PubMed  Google Scholar 

  • Dische Z (1965) The glycoproteins and glycolipoproteins of the bovine lens and their relation to albuminoid. Invest Ophthalmol 4:759–778

    CAS  PubMed  Google Scholar 

  • Fulhorst HW, Young RW (1966) Conversion of soluble lens protein to albuminoid. Invest Ophthalmol 5:298–303

    CAS  PubMed  Google Scholar 

  • Greiling TMS, Houck SA, Clark JI (2009) The zebrafish lens proteome during development and aging. Mol Vis 15:2313–2325

    CAS  PubMed  Google Scholar 

  • Grove TJ, Sidell BD (2004) Fatty acyl CoA synthetase from Antarctic notothenioid fishes may influence substrate specificity of fat oxidation. Comp Biochem Physiol B Biochem Mol Biol 139:53–63

    Article  PubMed  Google Scholar 

  • Hains PG, Truscott RJW (2007) Post-translational modifications in the nuclear region of young, aged, and cataract human lenses. J Proteome Res 6:3935–3943

    Article  CAS  PubMed  Google Scholar 

  • Han X, Gross RW (1994) Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci USA 91:10635–10639

    Article  CAS  PubMed  Google Scholar 

  • Harding JJ, Dilley KJ (1976) Structural proteins of the mammalian lens: a review with emphasis on changes in development, aging and cataract. Exp Eye Res 22:1–73

    Article  CAS  PubMed  Google Scholar 

  • Harrington V, McCall S, Huynh S, Srivastava K, Srivastava OP (2004) Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses. Mol Vis 10:476–489

    CAS  PubMed  Google Scholar 

  • Hejtmancik JF, Thompson MA, Wistow G, Piatigorsky J (1986) cDNA and deduced protein sequence for the beta B1-crystallin polypeptide of the chicken lens. Conservation of the PAPA sequence. J Biol Chem 261:982–987

    CAS  PubMed  Google Scholar 

  • Hochachka PW, Somero G (2002) Biochemical adaptation. In: Hochachka PW, Somero G (eds) Mechanism and process in physiological evolution. Oxford University Press, New York

  • Horn PL (2002) Age and growth of Patagonian toothfish (Dissostichus eleginoides) and Antarctic toothfish (D. mawsoni) in waters from the New Zealand subantarctic to the Ross Sea, Antarctica. Fish Res 56:275–287

    Article  Google Scholar 

  • Horn P, Sutton C, DeVries AL (2003) Evidence to support the annual formation of growth zones in otoliths of Antarctic toothfish (Dissostichus mawsoni). CCAMLR Sci 10:125–138

    Google Scholar 

  • Jagger WS, Sands PJ (1996) A wide-angle gradient index optical model of the crystalline lens and eye of the rainbow trout. Vision Res 36:2623–2639

    Article  CAS  PubMed  Google Scholar 

  • Jaillon O, Aury J, Brunet F, Petit J, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biemont C, Skalli Z, Cattolico L, Poulain J, de Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau J, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff J, Guigo R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quetier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957

    Article  PubMed  Google Scholar 

  • Kiss AJ (2005) Functional, biochemical and molecular analyses of the cold stable eye lens crystallins from the Antarctic toothfish Dissostichus mawsoni. Dissertation, University of Illinois at Urbana-Champaign

  • Kiss A, Cheng C (2008) Molecular diversity and genomic organisation of the alpha, beta and gamma eye lens crystallins from the Antarctic toothfish Dissostichus mawsoni. Comp Biochem Physiol Pt D 3:155–171

    Google Scholar 

  • Kiss AJ, Mirarefi AY, Ramakrishnan S, Zukoski CF, Devries AL, Cheng CH (2004) Cold-stable eye lens crystallins of the Antarctic nototheniid toothfish Dissostichus mawsoni Norman. J Exp Biol 207:4633–4649

    Article  CAS  PubMed  Google Scholar 

  • Kroger RHH, Campbell MCW, Munger R, Fernald RD (1994) Refractive index distribution and spherical aberration in the crystalline lens of the African cichlid fish Haplochromis burtoni. Vision Res 34:1815–1822

    Article  CAS  PubMed  Google Scholar 

  • Lampi KJ, Ma Z, Hanson SR, Azuma M, Shih M, Shearer TR, Smith DL, Smith JB, David LL (1998) Age-related changes in human lens crystallins identified by two-dimensional electrophoresis and mass spectrometry. Exp Eye Res 67:31–43

    Article  CAS  PubMed  Google Scholar 

  • Lee Sohn R, Huang P, Kawahara G, Mitchell M, Guyon J, Kalluri R, Kunkel LM, Gussoni E (2009) A role for nephrin, a renal protein, in vertebrate skeletal muscle cell fusion. Proc Natl Acad Sci USA 106:9274–9279

    Article  Google Scholar 

  • Lin Y, Dobbs G III, DeVries AL (1974) Oxygen consumption and lipid content in red and white muscles of antarctic fishes. J Exp Zool 189:379–385

    Article  CAS  PubMed  Google Scholar 

  • Loewenstein MA, Bettelheim FA (1979) Cold cataract formation in fish lenses. Exp Eye Res 28:651–663

    Article  CAS  PubMed  Google Scholar 

  • Logue JA, de Vries AL, Fodor E, Cossins AR (2000) Lipid compositional correlates of temperature-adaptive interspecific differences in membrane physical structure. J Exp Biol 203:2105–2115

    CAS  PubMed  Google Scholar 

  • Lovicu FJ, Robinson ML (2004) The lens: historical and comparative perspectives. In: Lovicu FJ, Robinson ML (eds) Development of the ocular lens. Cambridge University Press, pp 3–26

  • Mirarefi AY, Boutet S, Ramakrishnan S, Kiss AJ, Cheng CC, DeVries AL, Robinson IK, Zukoski CF (2010) Small-angle X-ray scattering studies of the intact eye lens: effect of crystallin composition and concentration on microstructure. Biochimica et Biophysica Acta (BBA)—General Subjects 1800:556–564. doi:10.1016/j.bbagen.2010.02.004

    Google Scholar 

  • Mörner C (1864) Untersuchung der Proteïnsubstanzen in den leichtbrechenden Medien des Auges I. Zeitscrift für physiologische Chemie 18:61–106

    Google Scholar 

  • Pan FM, Chang WC, Lin CH, Hsu AL, Chiou SH (1995) Characterization of gamma-crystallin from a catfish: structural characterization of one major isoform with high methionine by cDNA sequencing. Biochem Mol Biol Int 35:725–732

    CAS  PubMed  Google Scholar 

  • Pan FM, Chuang MH, Chiou SH (1997) Characterization of gamma S-crystallin isoforms from lip shark (Chiloscyllium colax): evolutionary comparison between gamma S and beta/gamma crystallins. Biochem Biophys Res Commun 240:51–56

    Article  CAS  PubMed  Google Scholar 

  • Paolisso G, Barbieri M, Bonafè M, Franceschi C (2000) Metabolic age modelling: the lesson from centenarians. Eur J Clin Invest 30:888–894

    Article  CAS  PubMed  Google Scholar 

  • Paterson CA, Delamere NA (1992). In: Mosby-Year Book (ed) Physiology of the Eye. Mosby-Year Book, New York

  • Patwardhan V, Modak SP (1992) Physicochemical characterization and phylogenetic comparison of fish lens proteins. Indian J Biochem Biophys 29:498–507

    CAS  PubMed  Google Scholar 

  • Pierscionek B, Augusteyn RC (1988) Protein distribution patterns in concentric layers from single bovine lenses: changes with development and ageing. Curr Eye Res 7:11–23

    Article  CAS  PubMed  Google Scholar 

  • Pierscionek BK, Augusteyn RC (1991) Structure/function relationship between optics and biochemistry of the lens. Lens Eye Toxic Res 8:229–243

    CAS  PubMed  Google Scholar 

  • Pierscionek BK, Augusteyn RC (1995) The refractive index and protein distribution in the blue eye trevally lens. J Am Optom Assoc 66:739–743

    CAS  PubMed  Google Scholar 

  • Posner M (2003) A comparative view of alpha crystallins: the contribution of comparative studies to understanding function. Integr Comp Biol 43:481–491

    Article  CAS  Google Scholar 

  • Posner M, Hawke M, Lacava C, Prince CJ, Bellanco NR, Corbin RW (2008) A proteome map of the zebrafish (Danio rerio) lens reveals similarities between zebrafish and mammalian crystallin expression. Mol Vis 14:806–814

    CAS  PubMed  Google Scholar 

  • Rafferty NS, Scholz DL (1989) Comparative study of actin filament patterns in lens epithelial cells. Are these determined by the mechanisms of lens accommodation? Curr Eye Res 8:569–579

    Article  CAS  PubMed  Google Scholar 

  • Rezanka T, Sigler K (2009) Odd-numbered very-long-chain fatty acids from the microbial, animal and plant kingdoms. Prog Lipid Res 48:206–238

    Article  CAS  PubMed  Google Scholar 

  • Römisch K, Collie N, Soto N, Logue J, Lindsay M, Scheper W, Cheng CH (2003) Protein translocation across the endoplasmic reticulum membrane in cold-adapted organisms. J Cell Sci 116:2875–2883

    Article  PubMed  Google Scholar 

  • Rujoi M, Estrada R, Yappert MC (2004) In situ MALDI-TOF MS regional analysis of neutral phospholipids in lens tissue. Anal Chem 76:1657–1663

    Article  CAS  PubMed  Google Scholar 

  • Sand D, Glass R, Olson D, Pike H, Schlenk H (1984) Metabolism of furan fatty acids in fish. Biochim Biophys Acta 793:429–434

    CAS  PubMed  Google Scholar 

  • Santhoshkumar P, Udupa P, Murugesan R, Sharma KK (2008) Significance of interactions of low molecular weight crystallin fragments in lens aging and cataract formation. J Biol Chem 283:8477–8485

    Article  CAS  PubMed  Google Scholar 

  • Sharma KK, Santhoshkumar P (2009) Lens aging: effects of crystallins. Biochimica et Biophysica Acta (BBA)—General Subjects 1790:1095–1108. doi:10.1016/j.bbagen.2009.05.008

    Google Scholar 

  • Siezen RJ, Hom C, Kaplan ED, Thomson JA, Benedek GB (1988) Heterogeneity of gamma-crystallins from spiny dogfish (Squalus acanthias) eye lens. Exp Eye Res 46:81–93

    Article  CAS  PubMed  Google Scholar 

  • Sinclair A, Murphy K, Li D (2000) Marine lipids: overview “news insights and lipid composition of Lyprinol”. Allergy Immunol 32:261–271

    CAS  Google Scholar 

  • Sivak JG (1985) The Glenn A. fry award lecture: optics of the crystalline lens. Am J Optom Physiol Opt 62:299–308

    CAS  PubMed  Google Scholar 

  • Sivak JG (1990) Optical variability of the fish lens. In: Douglas RH, Djamgoz MBA (eds) The visual system of fish. Chapman and Hall Ltd, London pp 63–80

  • Smith AC (1969a) An electrophoretic study of protein extracted in distilled water and in saline solution from the eye lens nucleus of the squid, Nototodarus hawaiiensis (Berry). Comp Biochem Physiol 30:551–559

    Article  CAS  PubMed  Google Scholar 

  • Smith AC (1969b) Protein variation in the eye lens nucleus of the mackerel scad (Decapterus pinnulatus). Comp Biochem Physiol 28:1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Smith AC (1988) Indirect tissue electrophoresis: a new method for analyzing solid tissue protein. Comp Biochem Physiol B 90:791–794

    Article  CAS  PubMed  Google Scholar 

  • Smith JB, Sun YP, Smith DL, Green B (1992) Identification of the posttranslational modifications of bovine lens alpha-b-crystallins by mass-spectrometry. Protein Sci 1:601–608

    Article  CAS  PubMed  Google Scholar 

  • Spector A (1984a) Oxidation and cataract. Ciba Found Symp 106:48–64

    CAS  PubMed  Google Scholar 

  • Spector A (1984b) The search for a solution to senile cataracts. Proctor lecture. Invest Ophthalmol Vis Sci 25:130–146

    CAS  PubMed  Google Scholar 

  • Stark GR, Stein WH, Moore S (1960) Reactions of the cyanate present in aqueous urea with amino acids and proteins. J Biol Chem 235:3177–3181

    CAS  Google Scholar 

  • Sweetman G, Trinei M, Modha J, Kusel J, Freestone P, Fishov I, Joseleau-Petit D, Redman C, Farmer P, Norris V (1996) Electrospray ionization mass spectrometric analysis of phospholipids of Escherichia coli. Mol Microbiol 20:233–238

    Article  CAS  PubMed  Google Scholar 

  • Terrados J, Lopez-Jimenez JA (1996) Fatty acid composition and chilling resistance in the green alga Cauterpa prolifera (Forrskal) lamouroux (Chlorophyta, Caulerpales). Biochem Mol Biol Int 39:863–869

    CAS  PubMed  Google Scholar 

  • Toivonen LV, Sidorov VS, Nefedova ZA, Yurovitskii YG (2003) Age-related features of cataractogenesis in salmon fry. I. Lipid composition of lens during normal development. Russian J Dev Biol 34:19–21

    Article  CAS  Google Scholar 

  • Toivonen LV, Nefedova ZA, Sidorov VS, Yurovitskii YG (2004) Age-related features of cataractogenesis in salmon fry. II. Biochemical features of lens during cataractogenesis. Russian J Dev Biol 35:49–56

    Article  CAS  Google Scholar 

  • Ueda Y, Duncan MK, David LL (2002) Lens proteomics: the accumulation of crystallin modifications in the mouse lens with age. Invest Ophthalmol Vis Sci 43:205–215

    PubMed  Google Scholar 

  • Von Sallmann L, Halver JE, Collins E, Grimes P (1966) Thioacetamide-induced cataract with invasive proliferation of the lens epithelium in rainbow trout. Cancer Res 26:1819–1825

    Google Scholar 

  • Wistow G (1993) Lens crystallins: gene recruitment and evolutionary dynamism. Trends Biochem Sci 18:301–306

    Article  CAS  PubMed  Google Scholar 

  • Wistow G (1995) Peptide sequences for beta-crystallins of a teleost fish. Mol Vis 1:1

    CAS  PubMed  Google Scholar 

  • Wistow G, Wyatt K, David L, Gao C, Bateman O, Bernstein S, Tomarev S, Segovia L, Slingsby C, Vihtelic T (2005) γN-crystallin and the evolution of the βγ-crystallin superfamily in vertebrates. FEBS J 272:2276–2291

    Article  CAS  PubMed  Google Scholar 

  • Yu CM, Chang GG, Chang HC, Chiou SH (2004) Cloning and characterization of a thermostable catfish alphaB-crystallin with chaperone-like activity at high temperatures. Exp Eye Res 79:249–261

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

AJK wishes to thank Jessie Nicodemus for assistance in the analysis of the eluted crystallin fractions and the anonymous reviewers for their helpful suggestions. This work was supported by NSF grant OPP 02-31006 to A.L.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andor J. Kiss.

Additional information

Communicated by H.V. Carey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiss, A.J., Devries, A.L. & Morgan-Kiss, R.M. Comparative analysis of crystallins and lipids from the lens of Antarctic toothfish and cow. J Comp Physiol B 180, 1019–1032 (2010). https://doi.org/10.1007/s00360-010-0475-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-010-0475-9

Keywords

Navigation