Skip to main content
Log in

Early ant trajectories: spatial behaviour before behaviourism

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

In the beginning of the twentieth century, when Jacques Loeb’s and John Watson’s mechanistic view of life started to dominate animal physiology and behavioural biology, several scientists with different academic backgrounds got engaged in studying the wayfinding behaviour of ants. Largely unaffected by the scientific spirit of the time, they worked independently of each other in different countries: in Algeria, Tunisia, Spain, Switzerland and the United States of America. In the current literature on spatial cognition these early ant researchers—Victor Cornetz, Felix Santschi, Charles Turner and Rudolf Brun—are barely mentioned. Moreover, it is virtually unknown that the great neuroanatomist Santiago Ramón y Cajal had also worked on spatial orientation in ants. This general neglect is certainly due to the fact that nearly all these ant researchers were scientific loners, who did their idiosyncratic investigations outside the realm of comparative physiology, neurobiology and the behavioural sciences of the time, and published their results in French, German, and Spanish at rather inaccessible places. Even though one might argue that much of their work resulted in mainly anecdotal evidence, the conceptual approaches of these early ant researchers preempt much of the present-day discussions on spatial representation in animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abramson CI (2009) A study in inspiration: Charles Henry Turner (1867–1923) and the investigation of insect behavior. Annu Rev Entomol 54:343–359

    Article  CAS  PubMed  Google Scholar 

  • Abramson CI, Jackson LD, Fuller CL (2003) Charles Henry Turner: significant events and unanswered questions. In: Abramson CI, Fuller CL, Jackson LD (eds) Selected papers and biography of Charles Henry Turner (1867–1923), pioneer of comparative animal behavior studies. Edwin Mellen Press, Lewiston, NY, pp 19–69

    Google Scholar 

  • Aeschlimann J (1980) Rudolf Brun (1885–1969): Leben und Werk des Zürcher Neurologen, Psychoanalytikers und Entomologen. Zürcher Medizingesch Abh 144:1–71

    Google Scholar 

  • Bethe A (1898) Dürfen wir den Ameisen und Bienen psychische Qualitäten zuschreiben? Pflügers Arch Ges Physiol 70:15–100 (with 2 plates)

    Article  Google Scholar 

  • Bethe A (1900) Noch einmal über die psychischen Qualitäten der Ameisen. Plügers Arch Ges Physiol 79:39–52

    Article  Google Scholar 

  • Bethe A (1902) Die Heimkehrfähigkeit der Ameisen und Bienen zum Teil nach neueren Versuchen. Eine Erwiderung auf die Angriffe von v. Buttel-Reepen und von Forel. Biol Centralbl 22:193–215, 234–238

  • Beugnon G, Lachaud JP, Chagné P (2005) Use of long-term stored vector information in the neotropical ant Gigantiops destructor. J Insect Behav 18:415–432

    Article  Google Scholar 

  • Bohn G (1909) La Naissance de l’Intelligence. E. Flammarion, Paris

    Google Scholar 

  • Bohn G (1912) Les sensations et les idées-forces d’après des travaux experimentaux récents. Rev Idées 9:132–152

    Google Scholar 

  • Bolek S, Wittlinger M, Wolf H (2012) What counts for ants: how return behaviour and food search of Cataglyphis ants are modified by variations in food quantity and experience. J Exp Biol 215:3218–3222

    Article  PubMed  Google Scholar 

  • Brun R (1914) Die Raumorientierung der Ameisen und das Orientierungsproblem im allgemeinen. Eine kritisch-experimentelle Studie, zugleich ein Beitrag zur Theorie der Mneme. G. Fischer, Jena

    Book  Google Scholar 

  • Brun R (1916a) Le problème de l’orientation lointaine chez les fourmis et la doctrine transcendentale de V. Cornetz. Rev Suisse Zool 24:355–388

    Google Scholar 

  • Brun R (1916b) Weitere Untersuchungen über die Fernorientierung der Ameisen. Biol Centralbl 36:261–303

    Google Scholar 

  • Brun R (1917) Psychologie. In: Escherich K (ed) Die Ameise. 2nd edn. Vieweg, Braunschweig, pp 278–316

  • Brun R (1920) Das Instinktproblem im Lichte der modernen Biologie. Schweiz Arch Neurol Psychiat 6:80–124, 193–166

  • Brun R (1923) Vergleichende Untersuchungen über Insektengehirne, mit besonderer Berücksichtigung der pilzförmigen Körper (Corpora pedunculata Dujardini). Schweiz Arch Neurol Psychiat 13:144–172

    Google Scholar 

  • Brun R (1925a) Experimente zur Fernorientierung der Ameisen. Mitt Schweiz Entomol Ges 13:413–416

    Google Scholar 

  • Brun R (1925b) Ein Fall von Hirntumor bei der Ameise. Schweiz Arch Neurol Psychiat 16:86–99

    Google Scholar 

  • Brun R (1926) Experimentelle Beiträge zur Dynamik und Ökonomie des Triebkonflikts (Biologische Parallelen zu Freuds Trieblehre). Imago. Z Anwend Psychoanalyse Natur Geisteswiss 12:147–170

    Google Scholar 

  • Brun R (1932) Psychologische Forschungen an Ameisen. In: Abderhalden E (ed) Handbuch der biologischen Arbeitsmethoden. Abt VI: Methoden der experimentellen Psychologie. Teil D: Methoden der vergleichenden Tierpsychologie. Urban und Schwarzenberg, Berlin, pp 179–232

    Google Scholar 

  • Brun R (1942) Allgemeine Neurosenlehre. Biologie, Psychoanalyse und Psychohygiene leib-seelischer Störungen. B Schwabe, Basel (English edition: General theory of neuroses. International University Press, New York, 1951)

  • Brun R (1956) Mein Weg zu Freud. Schweiz Z Psychol Anwend 15:125–130

    Google Scholar 

  • Cadwallader TC (1984) Neglected aspects of the evolution of American comparative and animal psychology. In: Greenberg G, Tobach E (eds) Behavioral evolution and integrated levels: the TC Schneirla conference series. Erlbaum, Hillsdale, pp 15–48

    Google Scholar 

  • Carthy JD (1950) Odour trails of Acanthomyops fuliginosus. Nature 166:154

    Article  CAS  PubMed  Google Scholar 

  • Cartwright BA, Collett TS (1983) Landmark learning in bees: experiments and models. J Comp Physiol 151:521–543

    Article  Google Scholar 

  • Cheeseman JF, Millar CD, Greggers U, Lehmann K, Pawley MDM, Gallistel CR, Warman GR, Menzel R (2014) Way-finding in displaced clock-shifted bees proves bees use a cognitive map. PNAS 111:8949–8954 (Rebuttal by Cheung A, Collett M, Collett TS, Dewar A, Dyer F, Graham P, Mangan M, Narendra A, Philippides A, Stürzl W, Webb B, Wystrach A, Zeil J (2014) PNAS 111. doi:10.1073/pnas.1415738111. Reply by Cheeseman et al. (2014) PNAS 111, doi:10.1073/pnas.1415738111)

  • Cheung A (2014) Animal path integration: a model of positional uncertainty along tortuous paths. J Theor Biol 341:17–33

    Article  PubMed  Google Scholar 

  • Cheung A, Vickerstaff R (2010) Finding the way with a noisy brain. PLoS Comput Biol 6(11):e1000992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Claparède É (1903) La faculté d’orientation lontaine (sens de direction—sens du retour). Arch Psychol 2:133–180

    Google Scholar 

  • Claparède É (1909) Die Methoden der tierpsychologischen Beobachtungen und Versuche. In: Über Tierpsychologie. Zwei Vorträge von L. Edinger und É. Claparède. J.A. Barth, Leipzig, pp 31–67

  • Collett M, Collett TS (2000) How do insects use path integration for their navigation? Biol Cybern 83:245–259

    Article  CAS  PubMed  Google Scholar 

  • Cornetz V (1897) Le Sahara Tunisien. Étude Géographique. Société de Géographique, Paris (Preprint (1896) in: Bull Soc Géogr, Sér 7, 17:518–554)

  • Cornetz V (1909a) Observations sur le sens de la direction chez l’homme. Rev Idées 6:60–65

    Google Scholar 

  • Cornetz V (1909b) Le sentiment topographique chez les fourmis. Rev Idées 6:452–458

    Google Scholar 

  • Cornetz V (1910a) Trajets de fourmis et retours au nid. Mém Inst Gén Psychol, Sect Psychol Zool 2:1–167

    Google Scholar 

  • Cornetz V (1910b) Album faisant suite aux trajets de fourmis et retours au nid. Mém Inst Gén Psychol Sect Psychol Zool 2, plates 1–44

  • Cornetz V (1910c) Texte exploratif de l’album faisant suite aux trajets de fourmis et retours au nid. Inst Gén Psychol Sect Psychol Zool 2(Supp l):1–68

    Google Scholar 

  • Cornetz V (1910d) Un règle de constance dans les trajets lointains de la fourmi exploratrice. Rev Idées 7:387–400

    Google Scholar 

  • Cornetz V (1911a) L’œil-boussole de la fourmi d’après Santschi. Rev Idées 8:233–239

    Google Scholar 

  • Cornetz V (1911b) La conservation de l’orientation chez la fourmi. Rev Suisse Zool 19:153–173

    Google Scholar 

  • Cornetz V (1912) Quelques observations sur l’estimation de la distance chez la fourmi. Bull Soc Hist Nat Afr Nord 4:39–45

    Google Scholar 

  • Cornetz V (1913a) Transport de fourmi d’un milieu dans un autre. Bull Soc Hist Nat Afr Nord 5:199–212

    Google Scholar 

  • Cornetz V (1913b) Divergences d’interprétation à propos de l’orientation chez la fourmi. Rev Suisse Zool 21:795–806

    Google Scholar 

  • Cornetz V (1913c) Les pistes de fourmis. La Nat 41:419–421

    Google Scholar 

  • Cornetz V (1914a) Les Explorations et les Voyages des Fourmis. E. Flammarion, Paris

    Google Scholar 

  • Cornetz V (1914b) Opinions diverses à propos de l’orientation chez la fourmi. Bull Soc Hist Nat Afr Nord 6:5–12

    Google Scholar 

  • Cornetz V (1925) Un anniversaire: l’expérience de Piéron. Bull Soc Hist Nat Afr Nord 16:132–145

    Google Scholar 

  • Cornetz V (1929) Orientation, conservation de la direction, marche compensée, polarisation. J Psychol Norm Pathol 26:354–409

    Google Scholar 

  • Cornetz V (1933) L’Homme et la Fourmi. L’Association des Écrivains Algériens, Alger

    Google Scholar 

  • Crozier WJ (1929) The study of living organisms. In: Murchison C (ed) The foundations of experimental psychology. Clark University Press, Worcester, pp 45–127

    Chapter  Google Scholar 

  • Darwin C (1873) Origin of certain instincts. Nature 7:417–418

    Article  Google Scholar 

  • Dawkins R (1957) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  • de Gourmont R (1909) Promenades philosophiques. Mercure de France, Paris

    Google Scholar 

  • Dewsbury DA (2003) Charles Henry Turner, scientist. In: Abramson CI, Fuller CL, Jackson LD (eds) Selected papers and biography of Charles Henry Turner (1867–1923), pioneer of comparative animal behavior studies. Edwin Mellen Press, Lewiston, pp 1–17

    Google Scholar 

  • Du Bois WEB (1929) Postscript. The crisis, June, pp 203–204, 212

  • Du Bois WEB (1938) The Negro scientist. Am Scholar 8:309–320

    Google Scholar 

  • Emery C (1893) Intelligenz und Instinkt der Tiere. Bemerkungen zu E. Wasmanns neuestem Werke: Die zusammengesetzten Nester und gemischten Kolonien der Ameisen. Biol Centralbl 13:151–155

    Google Scholar 

  • Exner S (1883) Negative Versuchsergebnisse über das Orientierungsvermögen der Brieftauben. Sitzungsber Akad Wiss Wien Math Naturwiss Klasse 102:318–331

    Google Scholar 

  • Fielde AM (1901) Further study of an ant. Proc Acad Sci Phila 53:521–544

    Google Scholar 

  • Forel A (1886) Expériences et remarques critiques sur les sensations des insectes. Recl Zool Suisse 4:1–29, 145–240 [(with 1 plate). Appendix ibd. 4:515–523 (1888)]

  • Forel A (1902) Die psychischen Fähigkeiten der Ameisen und einiger anderer Insekten, mit einem Anhang über die Eigentümlichkeiten des Geruchssinnes bei jenen Tieren. Reinhardt, München

    Google Scholar 

  • Forel A (1903) Nochmals Herr Bethe und die Insektenphysiologie. Biol Centralbl 23:1–3

    Google Scholar 

  • Forel A (1905) Richard Semons Mneme als arterhaltendes Prinzip im Wechsel des organismischen Geschehens. Arch Rassen Gesellschaftsbiol 2:169–197

    Google Scholar 

  • Forel A (1935) Rückblick auf mein Leben. Europa-Verlag, Zürich

    Google Scholar 

  • Fraenkel GS (1931) Die Mechanik der Orientierung der Tiere im Raum. Biol Rev Cambridge Phil Soc 6:37–87

    Article  Google Scholar 

  • Fraenkel GS, Gunn DL (1961) The orientation of animals. Kineses, taxes and compass reactions, 2nd edn. Dover, New York

    Google Scholar 

  • Fukushi T (2001) Homing in wood ants, Formica japonica: use of the skyline panorama. J Exp Biol 204:2063–2072

    CAS  PubMed  Google Scholar 

  • Goll W (1967) Strukturuntersuchungen am Gehirn von Formica. Z Morph Ökol Tiere 59:143–210

    Article  Google Scholar 

  • Harrison JF, Fewell JH, Stiller TM, Breed MD (1989) Effects of experience on use of orientation cues in the giant tropical ant. Anim Behav 37:869–871

    Article  Google Scholar 

  • Hartwick E, Friend W, Atwood C (1977) Trail-laying behaviour of the carpenter ant, Camponotus pennsylvanicus (Hymenoptera: Formicidae). Canad Entomol 109:129–136

    Article  Google Scholar 

  • Heisenberg M (1983) Initiale Aktivität und Willkürverhalten bei Tieren. Naturwissenschaften 70:70–78

    Article  CAS  PubMed  Google Scholar 

  • Heisenberg M (2013) Action selection. The brain as a behavioral organizer. In: Menzel R, Benjamin PR (eds) Invertebrate Learning and Memory. Elsevier and Academic Press, Amsterdam and Boston, pp 9–13

    Chapter  Google Scholar 

  • Homberg U (1994) Flight-correlated activity changes in neurons of the lateral accessory lobes in the brain of the locust Schistocerca gregaria. J Comp Physiol A 175:597–610

    Article  Google Scholar 

  • Jaccard P (1932) Le Sens de la Direction et l’Orientation lointaine chez l’Homme. Payot, Paris

    Google Scholar 

  • Jackson DE, Holcombe M, Ratnieks FLW (2004) Trail geometry gives polarity to ant foraging networks. Nature 432:907–909

    Article  CAS  PubMed  Google Scholar 

  • Jander R (1963) Grundleistungen der Licht- und Schwereorientierung von Insekten. Z Vergl Physiol 47:381–430

    Article  Google Scholar 

  • Jander R (1970) Ein Ansatz zur modernen Elementarbeschreibung der Orientierungshandlung. Z Tierpsychol 27:771–778

    Article  CAS  PubMed  Google Scholar 

  • Johannsen WL (1913) Elemente der exakten Erblichkeitslehre. G. Fischer, Jena

    Google Scholar 

  • Jonsson E (2002) Inner navigation. Why we get lost and how we find our way. Scribner, New York

    Google Scholar 

  • Kessler JH, Kidd JS, Kidd RA, Morin KA (1996) Distinguished African American scientists in the 20th century. Oryx Press, Phoenix

    Google Scholar 

  • Klotz JH (1987) Topographic orientation in two species of ants (Hymenoptera: Formicidae). Insectes Soc 34:236–251

    Article  Google Scholar 

  • Köhler O (1931) Die Orientierung von Pflanze und Tier im Raum II. Biol Zentralbl 51:36–58

    Google Scholar 

  • Kramer G, von Saint Paul U (1950) Stare lassen sich auf Himmelsrichtungen dressieren. Naturwissenschaften 37:526–527

    Article  Google Scholar 

  • Kühn A (1919) Die Orientierung der Tiere im Raum. G. Fischer, Jena

    Google Scholar 

  • Kutter H (1970) In Erinnerung an Rudolf Brun. Mitt Schweiz Entomol Ges 43:68–71

    Google Scholar 

  • Largeau V (1877) Le Sahara. Premier voyage d’exploration. Sandoz et Fischbacher, Paris

    Google Scholar 

  • Loeb J (1890) Der Heliotropismus der Tiere und seine Übereinstimmung mit dem Heliotropismus der Pflanzen. G. Hertz, Würzburg

    Google Scholar 

  • Loeb J (1901) Comparative Physiology of the Brain and Comparative Psychology. J. Murray, London (Extensively revised English edition of Loeb J (1899) Einleitung in die vergleichende Gehirnphysiologie und vergleichende Psychologie mit besonderer Berücksichtigung der wirbellosen Thiere. J.A. Barth, Leipzig)

  • Loeb J (1912) The mechanistic conception of life: biological essays. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Loeb J (1918) Forced movements, tropisms, and animal conduct. J.B. Lippincott, Philadelphia and London

    Book  Google Scholar 

  • Lopera Chaves MC, Freire Mallo MA (2009) Experimentos de Santiago Ramón y Cajal sobre el comportamiento de los hormigas. Pens Psicol Revist Nac Psicol Univ Coop Colombia 5:39–45

    Google Scholar 

  • Lubbock J (1881) Ants, bees and wasps: A record of observations on the habits of the social hymenoptera. Kegan Paul, Trench, Trubner, London

    Google Scholar 

  • Lukas F (1905) Psychologie der niedersten Tiere. Eine Untersuchung über die ersten Spuren psychischen Lebens im Tierreiche. W. Braumüller, Wien and Leipzig

    Google Scholar 

  • Menzel R (2014) The cognitive structure of visual navigation in honeybees. In: Werner JS, Chalupa LM (eds) The new visual neurosciences. MIT Press, Cambridge, pp 1179–1189

    Google Scholar 

  • Minkowski M, Müller M (1945) Herrn Professor Dr. Rudolf Brun zum 60. Geburtstag. Schweiz Arch Neurol Psychiat 55:213–216

    Google Scholar 

  • Mittelstaedt H (1963) Bikomponenten-Theorie der Orientierung. Ergeb Biol 26:253–258

    Google Scholar 

  • Mittelstaedt H, Mittelstaedt ML (1973) Mechanismen der Orientierung ohne richtende Aussenreize. Fortschr Zool 21:46–58

    Google Scholar 

  • Mobbs PG (1982) The brain of the honeybee Apis mellifera. I. The connections and spatial organization of the mushroom bodies. Philos Trans R Soc B 298:309–354

    Article  Google Scholar 

  • Müller M, Wehner R (1988) Path integration in desert ants, Cataglyphis fortis. Proc Natl Acad Sci USA 85:5287–5290

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller M, Wehner R (1994) The hidden spiral: systematic search and path integration in desert ants, Cataglyphis fortis. J Comp Physiol A 175:525–530

    Article  Google Scholar 

  • Müller M, Homberg U, Kühn A (1997) Neuroarchitecture of the lower division of the central body in the brain of the locust (Schistocerca gregaria). Cell Tissue Res 288:159–176

    Article  PubMed  Google Scholar 

  • Muser B, Sommer S, Wolf H, Wehner R (2005) Foraging ecology of the thermophilic Australian desert ant, Melophorus bagoti. Austr J Zool 53:301–311

    Article  Google Scholar 

  • Narendra A, Gourmaud S, Zeil J (2013) Mapping the navigational knowledge of individually foraging ants, Myrmecia croslandi. Proc R Soc B 280:20130683

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira PS, Hölldobler B (1989) Orientation and communication in the neotropical ant Odontomachus bauri (Hymenoptera, Formicidae, Ponerinae). Ethology 83:154–166

    Article  Google Scholar 

  • Parker GH (1938) Biographical memoirs of William Morton Wheeler 1865–1937. Natl Acad Sci USA Biogr Mem 19:203–241

    Google Scholar 

  • Pauly PJ (1987) Controlling life. Jacques Loeb and the engineering ideal in biology. Oxford University Press, New York and Oxford

    Google Scholar 

  • Pavlov IP (1928) Lectures on conditioned reflexes. International Publishers, New York

    Google Scholar 

  • Pflugfelder O (1937) Vergleichend-anatomische, experimentelle und embryologische Untersuchungen über das Nervensystem und die Sinnesorgane der Rhynchoten. Zoologica 34:1–102 (with 25 plates including 163 figures)

    Google Scholar 

  • Piaget J (1966) Henri Piéron: 1881–1964. Am J Psychol 79:147–150

    Google Scholar 

  • Piéron H (1904) Du rôle du sens musculaire dans l’orientation des fourmis. Bull Inst Gén Psychol 4:168–186

    Google Scholar 

  • Piéron H (1910) L’Évolution de la Mémoire. E. Flammarion, Paris

    Google Scholar 

  • Piéron H (1912) Le problème de l’orientation envisagé chez les fourmis. Scientia 12(Suppl):217–243

    Google Scholar 

  • Rádl EM (1903) Untersuchungen über den Phototropismus der Tiere. W. Engelmann, Leipzig

    Google Scholar 

  • Ramón y Cajal S (1899–1904) Textura del sistema nerviosa del hombre y vertebrados. Nicolás Moya [English edition (1995): Histology of the nervous system of man and vertebrates. Oxford University Press, New York and Oxford]

  • Ramón y Cajal S (1918) Observaciones sobre la estructura de los ocelos y vias nerviosas ocelares de algunos insectos. Trab Lab Invest Biol Univ Madrid 16:109–139

    Google Scholar 

  • Ramón y Cajal S (1921) Las sensaciones de las hormigas. Arch Neurobiol Psicol Fisiol Neurol Psiquiat 2:321–337

    Google Scholar 

  • Ramón y Cajal S (1933) Neuronismo o reticularismo? Las pruebas objectivas de la unidad anatómica de las celulas nerviosas. Arch Neurobiol 13:1–144. [Republished in English (1954): Neuron Theory or Reticular Theory? Objective Evidence of the Anatomical Unity of Nerve Cells. Consejo Superior de Investigaciones Cient, Madrid]

  • Ramón y Cajal S (1937) Recollections of my life. MIT Press, Cambridge

    Google Scholar 

  • Ramón y Cajal S, Sánchez y Sánchez D (1915) Contribution al conocimiento de los centros nerviosos de los insectos. Part 1. Retina y centros opticos. Trab Lab Invest Biol Univ Madrid 13:1–168

    Google Scholar 

  • Rau P (1923) Dr. Charles Henry Turner. Entomol News 34:289–292

    Google Scholar 

  • Regen J (1913) Über die Anlockung des Weibchens von Gryllus campestris durch telephonisch übertragene Stridulationslaute des Männchens. Ein Beitrag zur Frage der Orientierung bei den Insekten. Pflügers Arch Ges Physiol 155:193–200

    Article  Google Scholar 

  • Reynaud C (1898) The laws of orientation among animals. Rev Deux Mond (Paris) 146:380–402

    Google Scholar 

  • Rolland G (1890) Géologie du Sahara algérien et aperçu géologique sur le Sahara de l’Ocean Atlantique à la Mer Rouge. Imprimerie Nationale, Paris

    Google Scholar 

  • Romanes GJ (1882) Animal intelligence. Kegan Paul, Trench and Spottiswoode, London

    Google Scholar 

  • Rosengren R (1971) Route fidelity, visual memory and recruitment behaviour in foraging wood ants of the genus Formica (Hymenoptera, Formicidae). Acta Zool Fenn 133:1–106

    Google Scholar 

  • Santschi F (1911) Observations et remarques critiques sur le mécanisme de l’orientation chez les fourmis. Rev Suisse Zool 19:305–338

    Google Scholar 

  • Santschi F (1913a) Comment s’orientent les fourmis. Rev Suisse Zool 21:347–426

    Google Scholar 

  • Santschi F (1913b) A propos de l’orientation virtuelle chez les fourmis. Bull Soc Hist Nat Afr Nord 5:231–235

    Google Scholar 

  • Santschi F (1914) Première série de recherches sur l’orientation céleste des fourmis. Bull Soc Hist Nat Afr Nord 6:206–212

    Google Scholar 

  • Santschi F (1923a) Les differentes orientations chez les fourmis. Rev Zool Afr 11:111–144

    Google Scholar 

  • Santschi F (1923b) L’orientation sidérale des fourmis et quelques considérations sur leurs differentes possibilités d’orientation. Mém Soc Vaud Sci Nat 4:137–175

    Google Scholar 

  • Schacter DL (2001) Forgotten ideas. Neglected pioneers. Richard Semon and the story of memory. Psychology Press, Philadelphia

    Google Scholar 

  • Schmidt I, Collett TS, Dillier FX, Wehner R (1992) How desert ants cope with enforced detours on their way home. J Comp Physiol A 171:285–288

    Article  Google Scholar 

  • Schultheiss P, Cheng K (2011) Finding the nest: inbound searching behaviour in the Australian desert ant, Melophorus bagoti. Anim Behav 81:1031–1038

    Article  Google Scholar 

  • Schultheiss P, Cheng K (2013) Finding food: outbound searching behaviour in the Australian desert ant Melophorus bagoti. Behav Ecol 24:128–135

    Article  Google Scholar 

  • Semon R (1904) Die Mneme als erhaltendes Prinzip im Wechsel des organismischen Geschehens. W. Engelmann, Leipzig. [English edition (1921): The Mneme. Allen and Unwin, London]

  • Skinner BF (1938) The behavior of organisms. Appleton, New York

    Google Scholar 

  • Sommer S, Weibel D, Blaser N, Furrer A, Wenzler NE, Rössler W, Wehner R (2013) Group recruitment in a thermophilic desert ant, Ocymyrmex robustior. J Comp Physiol A 199:711–722

    Article  CAS  Google Scholar 

  • Strausfeld NJ (2012) Arthropod brains. Evolution, functional elegance, and historical significance. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Stürzl W, Grixa I, Mair E, Narendra A, Zeil J (2015) Three-dimensional models of natural environments and the mapping of navigational information. J Comp Physiol A 201:563–584

    Article  Google Scholar 

  • Szymanski JS (1911) Ein Versuch, das Verhältnis zwischen modal verschiedenen Reizen in Zahlen auszudrücken. Pflügers Arch Ges Physiol 138:457–486

    Article  Google Scholar 

  • Taylor EGR (1950) Five centuries of dead reckoning. J Navig 3:280–285

    Article  Google Scholar 

  • Thorndike EL (1911) Animal intelligence: Experimental studies. Macmillan, New York

    Book  Google Scholar 

  • Tomlinson JH, Silverstein RM, Moser JC, Brownlee RG, Ruth JM (1971) Identification of the trail pheromone of a leaf-cutting ant, Atta texana. Nature 234:348–349

    Article  Google Scholar 

  • Turner CH (1891) Morphology of the avian brain. J Comp Neurol 1:39–93, 107–133, 265–286

  • Turner CH (1899) Notes on the mushroom bodies of the invertebrate: a preliminary paper on the comparative study of the arthropod and annelid brain. Zool Bull 2:155–160

    Article  Google Scholar 

  • Turner CH (1906) A preliminary note on ant behavior. Biol Bull 12:31–36

    Article  Google Scholar 

  • Turner CH (1907) The homing of ants: an experimental study of ant behavior. J Comp Neurol Psychol 17:367–434

    Article  Google Scholar 

  • Turner CH (1908a) The homing of the mud-dauber. Biol Bull 15:215–225

    Article  Google Scholar 

  • Turner CH (1908b) The homing of the burrowing-bees (Anthophoridae). Biol Bull 15:247–258

    Article  Google Scholar 

  • Turner CH (1910) Experiments on color-vision of the honey bee. Biol Bull 19:257–279

    Article  Google Scholar 

  • Turner CH (1911) Experiments on pattern-vision of the honey bee. Biol Bull 21:249–264

    Article  Google Scholar 

  • Turner CH (1912) An experimental investigation of an apparent reversal of the responses to light of the roach Periplaneta orientalis. Biol Bull 23:371–386

    Article  Google Scholar 

  • Turner CH (1914) An experimental study of the auditory powers of the giant silk worm moths (Saturniidae). Biol Bull 27:325–332

    Article  Google Scholar 

  • Turner CH (1923) The homing of the Hymenoptera. Trans Acad Sci St Louis 24:27–45

    Google Scholar 

  • Turner CH, Schwarz E (1914) Auditory powess of the Catocala moths: an experimental field study. Biol Bull 27:275–293

    Article  Google Scholar 

  • Vickerstaff RJ, Cheung A (2010) Which coordinate system for modelling path integration? J Theor Biol 263:242–261

    Article  PubMed  Google Scholar 

  • Viehmeyer H (1900) Beobachtungen über das Zurückfinden von Ameisen (Leptothorax unifasciatus) zu ihrem Neste. Illus Z Entomol 5:311–313

    Google Scholar 

  • von Buttel-Reepen H (1900) Sind die Bienen Reflexmaschinen? Experimentelle Beiträge zur Biologie der Honigbiene. Biol Centralbl 20:97–109, 130–144, 177–193, 209–224, 289–304

  • von Frisch K (1914) Der Farbensinn und Formensinn der Biene. Zool Jb Physiol 37:1–182

    Google Scholar 

  • von Frisch K (1949) Die Polarisation des Himmelslichts als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148

    Article  CAS  PubMed  Google Scholar 

  • von Frisch K (1950) Die Sonne als Kompass im Leben der Bienen. Experientia 6:210–222

    Article  Google Scholar 

  • Warden CJ, Warner LH (1927) The development of animal psychology in the United States during the past three decades. Psychol Rev 34:196–205

    Article  Google Scholar 

  • Washburn MF (1908) The animal mind. A text-book of comparative psychology. Macmillan, New York

    Google Scholar 

  • Wasmann E (1897) Instinct und Intelligenz im Thierreich. Ein kritischer Beitrag zur modernen Thierpsychologie. Herder’sche Verlagsbuchhandlung, Freiburg i.Br

    Google Scholar 

  • Wasmann E (1898) Eine neue Reflextheorie des Ameisenlebens. Biol Centralbl 18:578–589

    Google Scholar 

  • Wasmann E (1899) Die psychischen Fähigkeiten der Ameisen. Zoologica 26:1–133

    Google Scholar 

  • Wasmann E (1901) Zum Orientierungsvermögen der Ameisen. Allg Z Entomol 6(19–21):41–43

    Google Scholar 

  • Wasmann E (1909) Die psychischen Fähigkeiten der Ameisen. Mit einem Ausblick auf die vergleichende Tierpsychologie. Schweizerbartsche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Watson JB (1907) A preliminary note on ant behavior [Review of Turner CH (1906)]. Psychol Bull 4:300–301

    Google Scholar 

  • Watson JB (1913) Psychology as the behaviorist views it. Psychol Rev 20:158–177

    Article  Google Scholar 

  • Wehner R (1982) Himmelsnavigation bei Insekten. Neurophysiologie und Verhalten. Neujahrsbl Naturf Ges Zürich 184:1–132

    Google Scholar 

  • Wehner R (1990) On the brink of introducing sensory ecology: Felix Santschi (1872–1940)—Tabib-en-Neml. Behav Ecol Sociobiol 27:295–306

    Article  Google Scholar 

  • Wehner R (2003) Desert ant navigation: how miniature brains solve complex tasks. J Comp Physiol A 189:579–588

    Article  CAS  Google Scholar 

  • Wehner R, Räber F (1979) Visual spatial memory in desert ants, Cataglyphis bicolor (Hymenoptera, Formicidae). Experientia 35:1569–1571

    Article  Google Scholar 

  • Wehner R, Srinivasan MV (1981) Searching behaviour of desert ants, genus Cataglyphis (Formicidae, Hymenoptera). J Comp Physiol 142:325–338

    Google Scholar 

  • Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199:129–140

    PubMed  Google Scholar 

  • Wehner R, Gallizzi K, Frei C, Vesely M (2002) Calibration processes in desert ant navigation: vector courses and systematic search. J Comp Physiol A 188:683–693

    Article  CAS  Google Scholar 

  • Wehner R, Cheng K, Cruse H (2014) Visual navigation strategies in insects: lessons from desert ants. In: Werner JS, Chalupa LM (eds) The new visual neurosciences. MIT Press, Cambridge, pp 1153–1163

    Google Scholar 

  • Wheeler WM (1928) The social insects. Their origin and evolution. Kegan Paul, Trench and Trubner; Harcourt and Brace, London; New York

    Google Scholar 

  • Wittlinger M, Wehner R, Wolf H (2006) The ant odometer: stepping on stilts and stumps. Science 312:1965–1967

    Article  CAS  PubMed  Google Scholar 

  • Wolf E (1927) Über das Heimfindevermögen der Bienen. II. Z Vergl Physiol 6:221–254

    Article  Google Scholar 

  • Wystrach A, Beugnon G, Cheng K (2011) Landmarks or panoramas: what do navigating ants attend to for guidance? Front Zool 8:21. doi:10.1186/1742-9994-8-21

    Article  PubMed  PubMed Central  Google Scholar 

  • Wystrach A, Mangan M, Philippides A, Graham P (2013) Snapshots in ants? New interpretations of paradigmatic experiments. J Exp Biol 216:1766–1770

    Article  PubMed  Google Scholar 

  • Zeil J, Hofmann MI, Chahl JS (2003) Catchment areas of panoramic snapshots in outdoor scenes. J Opt Soc Am A 20:450–469

    Article  Google Scholar 

  • Ziegler HE (1920) Der Begriff des Instinktes einst und jetzt. Eine Studie über die Geschichte und die Grundlagen der Tierpsychologie. Mit einem Anhang: Die Gehirne der Bienen und Ameisen. 3rd revised and extended edn. G. Fischer, Jena

Download references

Acknowledgements

My biographical surveys would not have been possible without the help of several friends and colleagues, to whom I am most grateful. Colette Chevrot, Saint Etienne Vallée, France, a granddaughter of Victor Cornetz, informed me about many details of the Cornetz family. Dr. Klaus Nippert, Head of the Archives of the Karlsruhe Institute of Technology, provided me with documents relating to Cornetz’ times as a student and university assistant. Over many years the late Dr. Heinrich Kutter, Flawil, Switzerland, was extremely patient in answering my many questions about Felix Santschi and Rudolf Brun, whom he had both known personally. Professor Alberto Ferrús, Director of the Cajal Institute in Madrid, Spain, kindly invited my wife and me to browse through the rich collection of Cajal’s handwritten notes and manuscripts at the Instituto Cajal. Professor Charles I. Abramson (Oklahoma State University) was very helpful in discussing issues of Charles H. Turner’s scientific reception. Finally my sincere thanks go to Claudia Fischer, librarian at the University of Zürich, for her invaluable help and ceaseless efforts in retrieving the necessary literature, to Wulfila Gronenberg and Uwe Homberg for anatomical information and to the former for permitting me to include Fig. 8b in this essay, to my colleague Kevan Martin for reading the manuscript and providing valuable comments, to Sarah Steinbacher for her expert help in designing the figures, to Stefan Sommer for his support in editing the manuscript, and above all to my wife Sibylle for her continuous cooperation. Portrait credits Victor Cornetz: courtesy of Colette Chevrot, Saint Etienne Vallée, France. Felix Santschi: courtesy of Idelette Rosa Santschi, the late daughter of Felix Santschi, Monthey, Switzerland. Charles H. Turner: courtesy of Charles I. Abramson, Oklahoma State University, USA; published in Abramson (2009), Fig. 1. Santiago Ramón y Cajal: Ramón y Cajal (1933), frontispiece. Rudolf Brun: Minkowski and Müller (1945), frontispiece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Wehner.

Notes

Notes

1 For a biographical account written on the occasion of the 50th anniversary of Santschi’s death, see Wehner (1990).

2 At the turn of the nineteenth to the twentieth century it was a hotly discussed issue, whether trail laying ants could detect the inbound and outbound direction of a pheromone trail on the basis of the chemical polarity of the trail itself, or even of the individual footprint marks left by the marching ants, or whether they were unable to do so. Albrecht J. T. Bethe, who then was assistant at the Physiological Institute of the University of Strassburg, where a decade earlier Jacques Loeb had developed his tropism concept of animal orientation (Loeb 1890), proposed the former hypothesis (Bethe 1898, 1900, 1902). Adele Marion Fielde, an American missionary and feminist, who later in her life became a scientist, followed Bethe in this respect (Fielde 1901). Erich Wasmann, a Jesuit priest and famous entomologist, favoured the latter hypothesis (Wasmann 1898, 1901). Auguste Forel argued against either version and instead pointed out that mechanosensory information had to be taken into account as well (and in this context introduced his somewhat vague concept of a ‘topochemical sense’: Forel 1902, 1903). For an extensive and critical discussion of Forel’s topochemical sense, see Brun (1916b). Felix Santschi later discovered by careful observation of walking ants that chemical trails did not consist of passively applied chemical footprint marks, as had previously been assumed, but by actively deposited secretions of anal glands (Santschi 1913a). Almost four decades later and unaware of Santschi’s early work, John Carthy from Cambridge University ‘rediscovered’ this phenomenon (Carthy 1950). Finally, two more decades had to pass until the first trail pheromone of ants was chemically identified (in leafcutter ants of the genus Atta; Tomlinson et al. 1971).

3 Rosengren (1971), Harrison et al. (1989) and Jackson et al. (2004).

4 Victor Cornetz was a prolific writer. His first observations were published in the very same year in which he had started to work on ants (Cornetz 1909b). In the following year he wrote already an extensive monograph accompanied by an Album and lengthy handwritten notes (Cornetz 1910a, b, c).

5 Henri Louis Charles Piéron (1881–1964) received his M.Sc. degree in philosophy and his Ph.D. degree in physiology, before he entered the field of psychology and founded, in 1920, the Institute of Psychology at the University of Paris. His work concentrated on psychophysics and comparative psychology. Much admired by his colleagues he was extremely well read as well as an active writer. While he was still working on the orientation of ants (Piéron 1912), he published his first book in psychology (Piéron 1910). Surprisingly, in his biographical essay about Piéron, Jean Piaget did not mention Piéron’s myrmecological studies at all (Piaget 1966). For the classical account on Piéron’s pedometer hypothesis, see Piéron (1904).

6 For leg-manipulation studies, see Wittlinger et al. (2006). Cheung et al. provided mathematically rigorous analyses of how much noise various path integration schemes can tolerate; e.g. Cheung and Vickerstaff (2010) and Cheung (2014).

7 Cornetz interchangeably used a number of terms depicting the marked directedness of foraging journeys, e.g. ligne d’equilibre d’aller (Cornetz 1910b), ligne de reference (Cornetz 1911a), l’axe de sinuement (Cornetz 1910d). For the term espace de recherche, see e.g. Cornetz (1910d). Since the 1980s short-term sector fidelity has been recorded in many desert ant species. For recent examples, see Muser et al. (2005) and Sommer et al. (2013).

8 The first displacement experiments, in which ants selected homeward courses parallel to their pre-displacement courses, and ran for distances equivalent to their pre-displacement distances, were performed by Piéron (1904). Santschi dubbed this kind of orientation l’orientation virtuelle (Santschi 1913a). By using the terms conservation de l’orientation and la règle de constance Cornetz referred to the observation that in successive foraging runs the ants tended to maintain a rather constant direction (Cornetz 1910d, 1911b). He argued that this direction was determined by a completely internal sense of direction (un sens de perception des directions absolues dans l’espace; Cornetz 1914a).

9 In an early letter to Cornetz (dated 27 December 1910) Santschi already wondered about the faculté de direction, which Cornetz had frankly attributed to the ants, and asked what sensory system might be involved. In his later publications he presented clear evidence against Cornetz’ mysterious internal sense of direction, and instead described several ways of navigation based on a variety of external cues. His two most comprehensive accounts can be considered masterpieces of argumentation and descriptive narrative style (Santschi 1913a, 1923b).

10 The first experiments on light compass behaviour in ants have been performed in the laboratory by John Lubbock in Lasius (Lubbock 1881), by Hugo Viehmeyer in Leptothorax (Viehmeyer 1900) and by Charles Turner in Tapinoma (Turner 1907). Santschi’s classical 1911 paper describes the discovery of the sun compass in ants, and in fact in any animal species (Santschi 1911).

11 Santschi (1911, 1913a). Based on considerations made by Santschi (1911, p. 324) Cornetz coined the term ‘compass eyes’ (les yeux boussole: Cornetz 1911a).

12 Ramón y Cajal (1921); see also notes 43–46 and the special reference to Santiago Ramón y Cajal’s experiments on the orientation of ants further below in the text.

13 For Cornetz’ argument about changing ambient light distributions, see Cornetz (1912, 1913a). The difficulty to account for the daily changes in solar azimuth is mentioned in Cornetz (1913b, c).

14 Santschi published a short note on his cardboard-cylinder experiments in the very year in which he had performed them (Santschi 1914, appendix), but a detailed description followed only several years later (Santschi 1923b). There he interpreted his observation in a number of ways—for details, see Wehner (1990)—but finally was left with a riddle (Santschi 1923b, p. 159). Karl von Frisch remarked in a footnote that he had learned about Santschi’s crucial experiments only after he had performed his own ones (von Frisch 1949).

15 The paper that contains Santschi’s witty remark on time compensation of the sun compass makes wonderful reading and should be a must for anyone interested in animal navigation (Santschi 1913a). For Santschi’s rejection of Cornetz’ argument by hinting at the predictability of the sun’s daily movement, see also Santschi (1913b). Final proof came nearly simultaneously from experiments in bees and birds (von Frisch 1950; Kramer and von Saint Paul 1950). Before Karl von Frisch und Gustav Kramer had performed their critical experiments, the hypothesis of time compensation was erroneously refuted by Brun (1914, pp. 176–184) and Wolf (1927).

16 The travel during which Felix Santschi accompanied Auguste Forel to South America is described at length in Forel (1935, pp. 170–187).

17 Even though Santschi fully admired Auguste Forel and adopted nearly all of Forel’s scientific, philosophical and social arguments, his taxonomic concepts show that he never became a genuine evolutionary biologist, and in this respect did not follow his master.

18 Provided with letters of recommendation from the Swiss Ambassador in Paris and the French Minister of War to the commander of the French troops in Tunisia, Général Leclerc, Cornetz travelled at his own risk in the most southern parts of the country well beyond the French military posts in Medenine and Metameur. He stayed with the Berber tribes in the plains and sand-dune fields as well as in the rugged mountain area of the Djebel Maouaia around Guermessa and Douiret. The only geographic literature he had at hand was Largeau (1877) and Rolland (1890). His narrative report contains information not only about the physical geography and topography, but also about the distribution and life styles of the various Bedouin groups of the area (Cornetz 1897).

19 Until 1929 Georges Bohn’s La Naissance de l’Intelligence (The Emergence of Intelligence; Bohn 1909) was reprinted several times in French, translated into German (1910), but unfortunately never into English. For other historically interesting accounts on that subject, see Romanes (1882), Emery (1893), Wasmann (1897, 1899, 1909), von Buttel-Reepen (1900) and Lukas (1905). Much of the literature published mainly in the two decades around 1900 is discussed by Margaret Floy Washburn, then a professor of philosophy at the well renowned Vassar College north of New York City (Washburn 1908). On the early history of animal psychology, see also Claparède (1909) and Ziegler (1920).

20 Santschi (1913a) and Brun (1916a).

21 Cornetz (1909a). Recently, Erik Jonsson has referred to Victor Cornetz’ early observations in his book “Inner Navigation”: Jonsson (2002, pp. 111–116): “Adari Wayfinding in the Sahara”. To the best of my knowledge this is the only time since Rudolf Brun’s and Santiago Ramón y Cajal’s early references that a scientist has dwelled on Victor Cornetz’ work.

22 de Gourmont (1909, pp. 153–158).

23 Victor Cornetz wrote his final book in response to Pierre Jaccard’s elaborate account on long-distance orientation in humans (Jaccard 1932; Cornetz 1933). See also Cornetz (1909a)

24 The two appraisals of Santschi are from Cornetz (1911a, cit. p. 234; 1914b, cit. p. 9). For the comparison of Santschi with Forel and Wheeler, see Cornetz (1925, cit. p. 139).

25 Loeb (1890). This book already foreshadowed Loeb’s later attempts to consider organisms from a strictly physicochemical viewpoint. For the reference to Albrecht Bethe, see note 2.

26 Loeb (1901, 1912, 1918), Rádl (1903) and Crozier (1929, cit. p. 48).

27 Kühn (1919), Fraenkel (1931), Köhler (1931), Fraenkel and Gunn (1961) and Jander (1963, 1970).

28 References to Jacques Loeb: Cornetz (1911a, p. 236) and Santschi (1913a, p. 384).

29 For the concepts of menotaxis and mnemotaxis, see Kühn ( 1919, pp. 35, 51); an extended treatment has been provided by Fraenkel and Gunn (1961, pp. 106, 312).

30 For Loeb’s mechanistic conception of life, see Pauly (1987). We may add that at present the tide has turned completely. With the ‘cognitive turn’ in full swing, animals are regarded as autonomous agents. That sensory stimuli directly trigger behaviour—Loeb’s central tenet—is now considered the exception rather than the rule, and is thought to occur mainly in emergency cases. The role of external stimuli is relegated to guiding (orienting) ongoing behaviour, and to contributing to the search process within the repertoire of behavioural modules, which the brain—the behavioural organizer—has at its disposal. This view, which Cornetz certainly would have acknowledged, is most forcefully expressed by Heisenberg (1983, 2013). For the application of this way of thinking to homing in honeybees, see Menzel (2014).

31 The small-scale search movements are described in Turner’s Ph.D. publication (Turner 1907).

32 Some exemplary references to the Turner loops: Cornetz (1910a), Piéron (1912) and Santschi (1913a).

33 Wehner and Srinivasan (1981), Müller and Wehner (1994) and Schultheiss and Cheng (2011). The search loops performed around frequently visited feeding sites exhibit similar structural properties to the ones around the ants’ final goal, the nest entrance (Bolek et al. 2012, Schultheiss and Cheng 2013).

34 Watson ( 1907, cit. p. 300) and Rau ( 1923, cit. p. 290).

35 Du Bois ( 1938, cit. p. 309).

36 Du Bois’ (1929) empathic “overwork” comment is certainly based on the generally acknowledged fact that Turner was an indefatigable worker during all his life, who had to perform his research under the most adverse circumstances. Turner retired from Sumner High School in St. Louis because of illness and died one year later in the house of his son in Chicago from myocarditis (Abramson et al. 2003).

37 For biographical accounts on Charles Henry Turner, see Kessler et al. ( 1996 ), Dewsbury ( 2003 ) and Abramson ( 2009 ).

38 Warden and Warner (1927) and Cadwallader (1984). At the turn of the nineteenth to twentieth century the University of Chicago, where Turner did his dissertation work, was among the first three academic institutions in the United States (besides Clark and Harvard), at which departments of animal psychology were established.

39 Colour vision: Turner (1910) and von Frisch (1914; for a remark on Turner’s work, see pp. 79–80). Pattern recognition: Turner (1911). In his paper on colour vision in bees Turner discussed the question of whether brightness differences could have played a role, and presented some indirect evidence that the hue of colour must have been the decisive cue, but he did not perform the finally decisive control experiments.

40 Turner (1908a, b; 1910, cit. p. 277; 1923). For recent work on visual spatial homing in ants, see e.g. Wehner and Räber (1979), Wehner et al. (1996) and Wystrach et al. (2011, 2013). Modelling approaches range from the first formulation of the ‘snapshot model’ (Cartwright and Collett 1983) via concepts of ‘image difference functions’ (Zeil et al. 2003) to attempts of mapping the entire navigational information content of natural environments (Stürzl et al. 2015).

41 Studies on cockroaches (Turner 1912) and hymenopterans (see notes 39, 40). William Morton Wheeler, who several times referred to Turner’s work (see note 42), fully agreed with Turner’s view on insect behaviour. In fact, Wheeler had “intense and heated discussions” with Jacques Loeb, when in the 1890s both were colleagues at the University of Chicago (Parker 1938, cit. p. 221). In his studies on hearing in saturniid and erebid moths Turner emphasized the functional “significance” of a stimulus necessary to elicit an animal’s response (Turner 1914; Turner and Schwarz 1914). Actually, Charles Turner—together with and independently of the Slovenian zoologist Ivan Janez (Johann) Regen, who performed the famous ‘telephone experiment’ in crickets (Regen 1913)—provided the first conclusive behavioural evidence of hearing in insects.

42 Turner’s neuroanatomical work: Turner (1891, 1899); see Wheeler (1928, cit. p. 178). It is not clear why Wheeler called Turner one of his students. Wheeler had left the University of Chicago in 1899 for the University of Texas in Austin, and when Turner later started his studies at the University of Chicago in 1906, Wheeler was Curator of Invertebrate Zoology at the American Museum of Natural History in New York (Parker 1938; Cadwallader 1984; Abramson 2009).

43 The pioneering accounts of Santiago Ramón y Cajal and his major collaborator Domingo Sánchez y Sánchez are timeless masterpieces in vertebrate and invertebrate neuroanatomy (Ramón y Cajal 1899–1904; Ramón y Cajal and Sánchez y Sánchez 1915). At this juncture, I invite the reader to consult Nicholas Strausfeld’s brilliant account on the structure, evolution and research history of arthropod brains. In this scholarly and aesthetically appealing piece of art Nick retrieves many of the neuroanatomical treasures created by the great Spanish scientists (Strausfeld 2012).

44 The comments are from Santiago Ramon y Cajal’s autobiography (Ramón y Cajal 1937, cit. p. 485). For a published account on Forel’s studies, which Ramón y Cajal later read, see Forel (1886).

45 Ramón y Cajal (1937, cit. pp. 505 and 506).

46 Santiago Ramón y Cajal summarized his “preliminary” data on spatial vision and orientation in ants in only one publication (Ramón y Cajal 1921). For a recent survey, see Lopera Chaves and Freire Mallo (2009).

47 Ramón y Cajal and Sánchez y Sánchez (1915); Ramón y Cajal S (1918). In contrast to the adherents of Loeb’s and Watson’s mechanistic view of behaviour the contemporaneous researchers on ant navigation expressed a strong interest in the structure of insect brains, and—with the exception of Victor Cornetz—they all performed some neuroanatomical studies. The results of this work have remained largely unpublished. In this regard, it is the more regrettable that Santiago Ramón y Cajal never tried his hands at ants. The first one who did so and then succeeded beautifully was Wolfgang Goll, whom his PhD supervisor Otto Pflugfelder had introduced into using the Golgi method (Pflugfelder 1937; Goll 1967). Independently of the two researches at Stuttgart-Hohenheim, the Golgi method was independently ‘rediscovered’ for staining individual neurons in insects by Nicholas Strausfeld, then a graduate student at University College London (Strausfeld 2012 and Fig. 3.15 therein).

48 Reference to memory: Ramón y Cajal (1937, cit. p. 589). Wilder Penfield’s quotation is from the foreword to Ramón y Cajal’s last monograph, in which one year before his death Ramón y Cajal provided a brilliant summa summarum of his arguments in favour of the neuron theory, or “neuron doctrine”; see Ramón y Cajal (1933).

49 Among biologists Rudolf Brun had been almost forgotten already at the time of his death (Kutter 1970), and in today’s community of psychologists he is completely unknown. Even though Brun was an outspoken Semonian (see notes 51, 52), Daniel Schacter does not mention him in his comprehensive account on Richard Semon (Schacter 2001). For a local appreciation of Brun’s activities as a neurologist, see Minkowski and Müller (1945).

50 Rudolf Brun had drawn most of his conclusions from Cornetz’ and Santschi’s work and had described and discussed his own work already in an early monograph (Brun 1914). By later adding the results of new and more systematically performed experiments he refined, but did not revise his concepts expounded in Die Raumorientierung der Ameisen. For his later work, see Brun (1916b, 1925a, 1932). Moreover, two review papers bear witness to Brun’s comprehensive knowledge of the main topics discussed in his days in ‘animal psychology’ (Brun 1917, 1920).

51 Richard Semon defined a ‘mneme’ in general biological terms as “the enduring though primarily latent modification in the irritable substance produced by a stimulus” (Semon 1904; English edition, cit. p. 12), as some kind of “cell or organic memory”. In Richard Dawkin’s ‘meme’ this unit of memory trace has turned into the cultural equivalent of a gene, into a unit carrying ideas, symbols or practices that can be transmitted culturally from one mind to another, and can self-replicate, mutate, and respond to selective pressures (Dawkins 1957). Surprisingly, when Dawkins introduced the term meme, he did not mention Semon’s mneme at all. The influential geneticist Wilhelm Johannsen, who had coined the term ‘gene’, read Semon’s book with interest, but concluded that even though the author had proposed some “ingenious speculations” Semon had drawn a false analogy between heredity and memory, between genes and mnemes (Johannsen 1913, cit. p. 423). Semon’s concept of the mneme was much appraised by Auguste Forel (Forel 1905). Alfred Kühn adhered to it—‘mnemotaxis’ (Kühn 1919)—but in modern memory research it has scarcely left any trace (Schacter 2001). Etymologically, the term mneme is derived from μνήμη (mnēmē), Greek for memory. Mnemosyne is the Greek goddess of memory.

52 Brun (1914, cit. p. 17). In order to appreciate this statement one has to take into account that Brun strictly adhered to Semon’s mnemic (psychological) terminology and described all results of his studies on spatial learning in ants in the framework of Semon’s concepts (Brun 1914, pp. 25–28).

53 Brun (1942). How Brun after having overcome some initial hesitation became a Freudian, and how he tried to reconcile psychoanalysis with his kind of biological thinking, is described in Brun (1926, 1956). See also Aeschlimann (1980).

54 For Rudolf Brun’s neuroanatomical studies on some insect species including ants, see Brun (1923, 1925b).

55 Two papers in The New Visual Neurosciences might suffice to provide an impression of the current discussion on the structure of the insect’s navigational toolkit (Menzel 2014; Wehner et al. 2014). The main views are expressed most concisely in a debate revolving around the interpretation of particular experiments in visual navigation of honeybees (Cheeseman et al. 2014 and rebuttals).

56 Szymanski (1911), Bohn (1912) and Santschi (1913a).

57 For detailed studies on path integration in ants, see e.g. Müller and Wehner (1988), Collett and Collett (2000) and Wehner et al. (2002); see also note 61.

58 Cornetz (1929). This is Victor Cornetz’ last paper on spatial orientation of ants. There and in former papers he only occasionally addressed the question of what we now call path integration, but deliberately dismissed of this possibility. He concluded that the ants were incapable of trigonométrie automatique and instead behaved according to la règle du contre-pied (Cornetz 1914a, p. 118).

59 As can be deduced from his published records, Rudolf Brun had clear evidence that Formica and Polyergus foragers referred to distant landmark cues, when they “closed the polygon” (Brun 1914, pp. 195–196, 215; Brun 1916b, pp. 300–302). Nearly a century had to pass until systematic studies showed that in cluttered, landmark-rich environments—similar to those in which Brun had performed his experiments—landmark guidance could almost completely override path integration, so that under these conditions the latter cannot be properly studied (Fukushi 2001; Beugnon et al. 2005; Narendra et al. 2013).

60 Brun (1914, cit. p. 192). The contemporaneous neglect of path integration as a possible means of navigation is the more astounding as in marine navigation ‘dead reckoning’ had been used for centuries (Taylor 1950), and as in an early study on pigeon homing Édouard Claparède, Professor of Psychology at the University of Geneva, had already alluded to path integration in describing a bird’s ability to directly return to the home loft after displacement along a twisted detour route (Claparède 1903). For even earlier, though vague discussions of whether homing pigeons could use information obtained by route integration during their outbound journeys, see Darwin (1873), Exner (1883) and Reynaud (1898).

61 In research on animal orientation the concept of path integration was first formalized by Horst and Marie-Luise Mittelstaedt (Mittelstaedt 1963; Mittelstaedt and Mittelstaedt 1973). As this kind of navigation results in the computation of a goal vector, it has also been treated as ‘vector navigation’ (Wehner 1982; Collett and Collett 2000). Full theoretical analyses of path integration have recently been provided by Allen Cheung and Robert Vickerstaff, see e.g., Cheung and Vickerstaff (2010) and Vickerstaff and Cheung (2010). In forced detour paradigms similar to the one shown in Fig. 9, Cataglyphis ants always update their home vector correctly (Schmidt et al. 1992; Wehner 2003 and Fig. 2b therein).

62 Thorndike (1911), Watson (1913), Pavlov (1928) and Skinner (1938).

63 Bulletin de la Société Entomologique Suisse 18:286–289 (1940). Entomologist’s Record and Journal of Variation 53:56, 99–100 (1941). Arbeiten über morphologische und taxonomische Entomologie aus Berlin-Dahlem 8:6–7 (1941). Revista de la Sociedad Entomologica Argentina 13:344 (1947). For a biographical account on Felix Santschi, see note 1.

64 L’Année Psychologique 38:979 (1937).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wehner, R. Early ant trajectories: spatial behaviour before behaviourism. J Comp Physiol A 202, 247–266 (2016). https://doi.org/10.1007/s00359-015-1060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-015-1060-1

Keywords