Abstract
Crickets use acoustic communication for pair formation. Males sing with rhythmical movements of their wings and the mute females approach the singing males by phonotaxis. Females walking on a trackball rapidly steer towards single sound pulses when exposed to split-song paradigms. Their walking path emerges from consecutive reactive steering responses, which show no temporal selectivity. Temporal pattern recognition is tuned to the species-specific syllable rate and gradually changes the gain of auditory steering. If pattern recognition is based on instantaneous discharge rate coding, then the tuning to the species-specific song pattern may already be present at the level of thoracic interneurons. During the processing of song patterns, changes in cytosolic Ca2+ concentrations occur in phase with the chirp rhythm in the local auditory interneurone. Male singing behaviour is controlled by command neurons descending from the brain. The neuropil controlling singing behaviour is located in the anterior protocerebrum next to the mushroom bodies. Singing behaviour is released by injection of cholinergic agonists and inhibited by γ-butyric acid (GABA). During singing, the sensitivity of the peripheral auditory system remains unchanged but a corollary discharge inhibits auditory processing in afferents and interneurons within the prothoracic auditory neuropil and prevents the auditory neurons from desensitisation.










Similar content being viewed by others
Abbreviations
- SP:
-
Syllable (or pulse) period
- SPL:
-
Sound pressure level
- ACh:
-
Acetylcholine
- GABA:
-
γ-butyric acid
References
Baden T, Hedwig B (2005) Calcium dynamics in cricket auditory neurons. Cambridge Neuroscience Seminar, Cambridge
Bell CC, Grant K (1989) Corollary discharge inhibition and preservation of temporal information in a sensory nucleus of Mormyrid electric fish. J Neurosci 9:1029–1044
Bentley DR (1977) Control of cricket song patterns by descending interneurons. J Comp Physiol A 116:19–38
Berridge MJ (1998) Neuronal calcium signalling. Neuron 21:13–26
Böhm H, Schildberger K (1992) Brain neurons involved in the control of walking in the cricket Gryllus bimaculatus. J Exp Biol 166:113–130
Borst A, Egelhaaf M (1992) In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. PNAS 89:4139–4143
Boyan G (1980) Auditory neurons in the brain of the cricket Gryllus bimaculatus (De Geer). J Comp Physiol A 140:81–93
Bradbury JW, Vehrenkamp SL (1998) Principles of animal communication. Sinauer, Sunderland
Clarac F, Cattaert D (1996) Invertebrate presynaptic inhibition and motor control. Exp Brain Res 112:163–180
Doherty JA (1985a) Trade-off phenomena in calling song recognition and phonotaxis in the cricket, Gryllus bimaculatus (Orthoptera, Gryllidae). J Comp Physiol A 156:787–801
Doherty JA (1985b) Temperature coupling and trade-off phenomena in the acoustic communication system of the cricket, Gryllus bimaculatus de Geer (Gryllidae). J Exp Biol 114:17–35
Doherty JA, Pires A (1987) A new microcomputer based method for measuring walking phonotaxis in the field crickets (Gryllidae). J Exp Biol 130:425–432
Edwards DH, Heitler WJ, Krasne FB (1999) Fifty years of a command neuron: the neurobiology of escape behaviour in the crayfish. TINS 22:153–161
Eibl E (1978) Morphology of the sense organs in the proximal parts of the tibiae of Gryllus campestris L. and Gryllus bimaculatus deGeer (Insecta, Ensifera). Zoomorphol 89:185–205
Esch H, Huber F, Wohlers DW (1980) Primary auditory neurons in crickets: Physiology and central projections. J Comp Physiol A 137:27–38
Fraenkel GS, Gunn DL (1961) The orientation of animals: Kineses, taxes and compass reactions. Dover, New York
Galizia CG, Kimmerle B (2004) Physiological and morphological characterisation of honeybee olfactory neurons combining electrophysiology, calcium imaging and confocal microscopy. J Comp Physiol A 190:21–38
Grüsser O-J (1986) Interaction of efferent and afferent signals in visual perception. A history of ideas and experimental paradigms. Acta Psychologica 63:3–21
Hedwig B (1994) A descending cephalo-thoracic command system controls stridulation in the acridid grasshopper Omocestus viridulus L. J Neurophysiol 72:2015–2025
Hedwig B (2000) Control of cricket stridulation by a command neuron: Efficacy depends on the behavioural state. J Neurophysiol 83:712–722
Hedwig B (2001) Singing and hearing: neuronal mechanisms of acoustic communication in Orthopterans. Zool 103:140–149
Hedwig B, Heinrich R (1997) Identified descending brain neurons control different stridulatory motor patterns in an acridid grasshopper. J Comp Physiol A 180:285–295
Hedwig B, Poulet JFA (2004) Complex auditory behaviour emerges from simple reactive steering. Nature 430:781–785
Hedwig B, Poulet JFA (2005) Mechanisms underlying phonotactic steering in the cricket Gryllus bimaculatus (de Geer) revealed with a fast trackball system. J Exp Biol 208:915–927
Helversen von D, Helversen von O (1995) Acoustic pattern recognition and orientation in orthopteran insects: parallel or serial processing? J Comp Physiol A 177:767–774
Hennig RM (1988) Ascending auditory interneurons in the cricket Teleogryllus commodus (Walker): comparative physiology and direct connections with afferents. J Comp Physiol A 163:135–143
Hennig RM (2003) Acoustic feature extraction by cross correlation in crickets? J Comp Physiol A 189:589–598
Hennig RM, Otto D (1995) Distributed control of song pattern generation in crickets revealed by lesions to the thoracic ganglia. Zool 99:268–276
Horseman G, Huber F (1994) Sound localisation in crickets I. Contralateral inhibition of an ascending interneurone (AN1) in the cricket Gryllus bimaculatus. J Comp Physiol A 175:389–398
Hoy RR (1978) Acoustic communication in crickets: A model system of feature detection. Fed Proc 37:2316–2323
Holst von E, Mittelstaedt H (1950) Das Reafferenzprinzip: Wechselwirkungen zwischen Zentralnervensystem und Peripherie. Naturwissenschaften 37:464–476
Huber F (1955) Sitz und Bedeutung nervöser Zentren für Instinkthandlungen beim Männchen von Gryllus campestris L. Z Tierpsychol 12:12–48
Huber F (1960) Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirnes bei der Fortbewegung und der Lauterzeugung der Grillen. Z vergl Physiol 44:60–132
Huber F (1964) The role of the central nervous system in Orthoptera during the co-ordination and control of stridulation. In: Busnel R-G Acoustic behaviour of animals. Elsevier Amsterdam, pp 440–487
Huber F (1983) Neural correlates of orthopteran and cicada phonotaxis.In: Huber F, Markl H(eds) Neuroethology and behavioural physiology Springer Berlin Heidelberg New York, pp 108–135
Huber F, Kleindienst H-U, Weber T, Thorson J (1984) Auditory behaviour of the cricket: III. Tracking of male calling song by surgically and developmentally one-eared females, and the curious role of the anterior tympanum. J Comp Physiol A 155:725–738
Koch C (1999) Biophysics of computation. Oxford University Press, New York
Kupfermann I, Weiss KR (1978) The command neuron concept. Behav Brain Sci 1:3–39
Kutsch W, Otto D (1972) Evidence for spontaneous song production independent of head ganglia in Gryllus campestris L. J Comp Physiol A 81:115–119
Michel K (1974) Das Tympanalorgan von Gryllus bimaculatus deGeer (Saltatoria, Gryllidae). Z Morph Tiere 77:285–315
Nabatiyan A, Poulet JFA, Polavieja G, Hedwig B (2003) Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system. J Neurophysiol 90:2484–2493
Nocke H (1972a) Biophysik der Schallerzeugung durch die Vorderflügel der Grillen. J Comp Physiol A 74:272–314
Nocke H (1972b) Physiological aspects of sound communication in crickets (Gryllus campestris L.). J Comp Physiol A 80:141–162
Nolen TG, Hoy RR (1984) Initiation of behaviour by single neurons: The role of behavioural context. Science 226:992–994
Oertner TG, Single S, Borst A (1999) Separation of voltage- and ligand-gated calcium influx in locust neurons by optical imaging. Neuroscience Letters 274:95–98
Ogawa H, Baba Y, Oka K (2001) Dendritic calcium accumulation regulates wind sensitivity via short-term depression at cercal sensory-to-giant interneurone synapses in the cricket Inc. J Neurobiol 46:301–313
Otto D (1971) Untersuchungen zur zentralnerv.ösen Kontrolle der Lauterzeugung von Grillen. Z vergl Physiol 74:227–271
Otto D (1978) Änderung von Gesangsparametern bei der Grille (Gryllus campestris) nach Injektion von Pharmaka ins Gehirn. Verh Dtsch Zool Ges, pp 245
Pollack GS (1986) Discrimination of calling song models by the cricket, Teleogryllus oceanicus: The influence of sound direction on neural encoding of the stimulus temporal pattern and on phonotactic behaviour. J Comp Physiol A 158:549–561
Pollack G S (1988) Selective attention in an insect auditory neuron. J Neurosci 8:2635–2639
Pollack GS, Hoy RR (1981) Phonotaxis in flying crickets: neural correlates. J Insect Physiol 27:41–45
Popov A, Shuvalov VF (1977) Phonotactic behaviour of crickets. J Comp Physiol A 119:111–126
Poulet JFA, Hedwig B (2001) Tympanic membrane oscillations and auditory receptor activity in the stridulating cricket Gryllus bimaculatus. J Exp Biol 204:1281–1293
Poulet JFA, Hedwig B (2002) A corollary discharge maintains auditory sensitivity during sound production. Nature 418:872–876
Poulet JFA, Hedwig B (2003a) A corollary discharge modulates central auditory processing in singing crickets. J Neurophysiol 89:1528–1540
Poulet JFA, Hedwig B (2003b) Corollary discharge inhibition of ascending auditory neurons in the stridulating cricket. J Neuroscience 23:4717–4725
Poulet JFA, Hedwig B (2005) Auditory orientation in crickets: Pattern recognition controls reactive steering. PNAS 102:15665–15669
Poulet JFA, Hedwig B (2006) The cellular basis of a corollary discharge. Science 311:518–522
Regen J (1913) Über die Anlockung des Weibchens von Gryllus campestris durch telefonische Übertragung der Stridulation des Männchens. Pflügers Arch Eur J Physiol 155:193–200
Roeder KD (1964) Aspects of the noctuid tympanic nerve response having significance in the avoidance of bats. J Insect Physiol 10:529–546
Roesel von Rosenhof AJ (1749) Insectenbelustigung zweyter Theil, welcher acht Klassen verschiedener sowohl inlaendischer als auch einiger auslaendischer Insecten enthaelt. Nuernberg, Fleischmann JJ
Schildberger K (1984) Temporal selectivity of identified auditory neurons in the cricket brain. J Comp Physiol A 155:171–185
Schildberger K, Hörner M (1988) The function of auditory neurons in cricket phonotaxis I. Influence of hyperpolarization of identified neurons on sound localisation. J Comp Physiol A 163:621–631
Schildberger K, Huber F, Wohlers DW (1989) Central auditory pathway: Neuronal correlates of phonotactic behaviour. In: Huber F, Moore TE, Loher W (eds) Cricket behaviour and neurobiology. Cornell University Press, Ithaca, pp 423–458
Schmitz B, Scharstein H, Wendler G (1982) Phonotaxis in Gryllus campestris L. (Orthoptera, Gryllidae). I. Mechanism of acoustic orientation in intact female crickets. J Comp Physiol A 148:431–444
Selverston AI, Kleindienst H-U, Huber F (1985) Synaptic connectivity between cricket auditory interneurons as studied by selective photoinactivation. J Neurosci 5:1283–1292
Single S, Borst A (2002) Different mechanisms of calcium entry within different dendritic compartments. J Neurophysiol 87:1616–1624
Sobel EC, Tank DW (1994) In vivo Ca2+ dynamics in a cricket auditory neurone: An example of chemical computation. Science 263:823–826
Sperry RW (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43:482–489
Stabel J, Wendler G, Scharstein H (1989) Cricket phonotaxis: Localization depends on recognition of the calling song. J Comp Physiol A 165:165–177
Staudacher EM (2001) Sensory responses of descending brain neurons in the walking cricket, Gryllus bimaculatus. J Comp Physiol A 187:1–17
Stout JF, McGhee R (1988) Attractiveness of the male Acheta domestica calling song to females II. The relative importance of syllable period, intensity, and chirp rate. J Comp Physiol A 164:277–287
Thorson J, Weber T, Huber F (1982) Auditory behaviour of the cricket. II. Simplicity of calling-song recognition in Gryllus, and anomalous phonotaxis at abnormal carrier frequencies. J Comp Physiol A 146:361–378
Ulagaraj SM, Walker TJ (1973) Phonotaxis of crickets in flight: Attraction of male and female to male calling songs. Science 182:1278–1279
Walker TJ, Masaki S (1989) Natural history. In: Huber F, Moore TE, Loher W (eds) Cricket behaviour and neurobiology. Cornell University Press, Ithaca, pp1–42
Webb B (2002) Robots in invertebrate neuroscience. Nature 417:359–363
Weber T, Thorson J (1988) Auditory behaviour of the cricket. IV. Interaction of direction of tracking with perceived split-song paradigms. J Comp Physiol A 163:13–22
Weber T, Thorson J (1989) Phonotactic behaviour of walking crickets. In: Huber F, Moore TE, Loher W (eds) Cricket behaviour and neurobiology. Cornell University Press, Ithaca, pp310–339
Weber T, Thorson J, Huber F (1981) Auditory behaviour of the cricket. I. Dynamics of compensated walking and discrimination on the Kramer treadmill. J Comp Physiol A 141:215–232
Wenzel B, Hedwig B (1999) Neurochemical control of cricket stridulation revealed by pharmacological microinjections into the brain. J Exp Biol 202:2203–2216
Wiersma CAG, Ikeda K (1964) Interneurons commanding swimmeret movements in the crayfish, Procambarus clarki (Girard). Comp Biochem Physiol 12:509–525
Wiese K, Eilts-Grimm K (1985) Functional potential of recurrent lateral inhibition in cricket audition. In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Parey, Berlin, pp 33–40
Wohlers DW, Huber F (1978) Intracellular recording and staining of cricket auditory interneurons (Gryllus campestris L., G. bimaculatus DeGeer). J Comp Physiol A 127:11–28
Wohlers DW, Huber F (1982) Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestris L. J Comp Physiol A 146:161–173
Acknowledgements
This work was supported by the BBSRC, the Royal Society and in early parts by the DFG. I thank J.F.A. Poulet, A. Nabatiyan, T. Baden, G. de Polavieja, B. Wenzel and R. Ingham for excellent experiments and M. Knepper for professional updating of our software tools. J.F.A. Poulet, S. Rogers, A. Whitney and M. Zorovic made valuable comments on the manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hedwig, B. Pulses, patterns and paths: neurobiology of acoustic behaviour in crickets. J Comp Physiol A 192, 677–689 (2006). https://doi.org/10.1007/s00359-006-0115-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00359-006-0115-8