Skip to main content
Log in

Variational mode decomposition for estimating critical reflected internal wave in stratified fluid

  • Original Paper
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The shear resulting from internal wave reflections can play a crucial role in the transport and resuspension of sediments in oceanic conditions. In particular, when these waves undergo a critical reflection phenomenon, the reflected wave can produce a very large shear. Separating the reflected wave from the incident wave is a technical challenge since the two waves share the same temporal frequency. In our study, we present a series of experimental measurements of internal waves in critical reflection configuration and we analyze them using the 2D-VMD-prox decomposition method. This decomposition method was adapted to specifically decompose waves in an internal wave critical reflection, showing an improvement in its performance with respect to preexisting internal wave decomposition methods. Being able to confidently isolate the reflected wave allowed us to compare our results to a viscous and nonlinear model for critical reflection that correctly describes the dependence of the shear rate produced in the boundary as a function of the experimental parameters.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almar R, Michallet H, Cienfuegos R, Bonneton P, Tissier M, Ruessink G (2014) On the use of the radon transform in studying nearshore wave dynamics. Coast Eng 92:24–30

    Article  Google Scholar 

  • Attouch H, Bolte J, Redont P, Soubeyran A (2010) An approach based on the Kurdyka–Lojasiewicz inequality. Math Oper Res 35:438–457

    Article  MathSciNet  MATH  Google Scholar 

  • Bogucki D, Dickey T, Redekopp LG (1997) Sediment resuspension and mixing by resonantly generated internal solitary waves. J Phys Oceanogr 27(7):1181–1196

    Article  Google Scholar 

  • Bolte J, Combettes PL, Pesquet JC (2010) Alternating proximal algorithm for blind image recovery. In: Proceedings international conference on image processing, China, Hong Kong, pp 26–29

  • Bourget B, Dauxois T, Joubaud S, Odier P (2013) Experimental study of parametric subharmonic instability for internal plane waves. J Fluid Mech 723:1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Brouzet C, Ermanyuk E, Joubaud S, Pillet G, Dauxois T (2017a) Internal wave attractors: different scenarios of instability. J Fluid Mech 811:544–568

    Article  MathSciNet  MATH  Google Scholar 

  • Brouzet C, Sibgatullin IN, Ermanyuk EV, Joubaud S, Dauxois T (2017b) Scale effects in internal wave attractors. Phys Rev Fluids 2:114803

    Article  Google Scholar 

  • Bühler O, Muller C (2007) Instability and focusing of internal tides in the deep ocean. J Fluid Mech 588:1–28

    Article  MathSciNet  MATH  Google Scholar 

  • Butman B, Alexander P, Scotti A, Beardsley R, Anderson S (2006) Large internal waves in massachusetts bay transport sediments offshore. Cont Shelf Res 26(17):2029–2049

    Article  Google Scholar 

  • Cacchione D, Wunsch C (1974) Experimental study of internal waves over a slope. J Fluid Mech 66:223–239

    Article  Google Scholar 

  • Cacchione D, Pratson L, Ogston A (2002) The shaping of continental slopes by internal tides. Science 296:724–727

    Article  Google Scholar 

  • Chalamalla V, Gayen B, Scotti A, Sarkar S (2013) Turbulence during the reflection of internalgravity waves at critical and near-critical slopes. J Fluid Mech 729:47–68

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies I, Lu J, Wu HT (2011) Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl Comput Harmonic Anal 30(2):243–261

    Article  MathSciNet  MATH  Google Scholar 

  • Dauxois T, Young W (1999) Near-critical reflection of internal waves. J Fluid Mech 390:271–295

    Article  MathSciNet  MATH  Google Scholar 

  • Dauxois T, Didier A, Falcon E (2004) Observation of near-critical reflection of internal waves in a stably stratified fluid. Phys Fluids 16(6):1936–1941

    Article  MATH  Google Scholar 

  • Dauxois T, Joubaud S, Odier P, Venaille A (2018) Instabilities of internal gravity wave beams. Annu Rev Fluid Mech 50:1–28

    Article  MathSciNet  MATH  Google Scholar 

  • DeSilva I, Imberger J, Ivey G (1997) Localized mixing due to a breaking internal wave ray at a sloping bed. J Fluid Mech 350:1–27

    Article  MathSciNet  Google Scholar 

  • Dragomiretskiy K, Zosso D (2014) Variational mode decomposition. IEEE Trans Signal Process 62(3):531–544

    Article  MathSciNet  MATH  Google Scholar 

  • Foare M, Pustelnik N, Condat L (2019) Semi-linearized proximal alternating minimization for a discrete Mumford-Shah model. IEEE Trans Image Process 29:2176–2189

    Article  MathSciNet  Google Scholar 

  • Fortuin JMH (1960) Theory and application of two supplementary methods of constructing density gradient columns. J Polym Sci 44(144):505–515

    Article  Google Scholar 

  • Gayen B, Sarkar S (2010) Turbulence during the generation of internal tide on a critical slope. Phys Rev Lett 104:218502

    Article  Google Scholar 

  • Gostiaux L, Dauxois T, Didelle H, Sommeria J, Viboud S (2006) Quantitative laboratory observations of internal wave reflection on ascending slopes. Phys Fluids 18(5):056602

    Article  Google Scholar 

  • Gostiaux L, Didelle H, Mercier S, Dauxois T (2007) A novel internal waves generator. Exp Fluids 42(1):123–130

    Article  Google Scholar 

  • Horne E, Beckebanze F, Micard D, Odier P, Maas LRM, Joubaud S (2019) Particle transport induced by internal wave beam streaming in lateral boundary layers. J Fluid Mech 870:848–869

    Article  Google Scholar 

  • Hosegood P, Bonnin J, van Haren H (2004) Solibore-induced sediment resuspension in the Faeroe-Shetland channel. Geophys Res Lett 31(9):L09301. https://doi.org/10.1029/2004GL019544

    Article  Google Scholar 

  • Huang NE, Shen Z, Long SR, Wu MC, Shih H, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The Empirical Mode Decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc R Soc 454:903–995

    Article  MathSciNet  MATH  Google Scholar 

  • Ivey GN, Winters KB, Koseff JR (2008) Density stratification, turbulence, but how much mixing? Annu Rev Fluid Mech 40:169–184

    Article  MathSciNet  MATH  Google Scholar 

  • Kataoka T, Akylas T (2020) Viscous reflection of internal waves from a slope. Phys Rev Fluids 5:014803

    Article  Google Scholar 

  • Kistovich Y, Chashechkin Y (1995) The reflection of beams of internal gravity waves at a flat rigid surface. J Appl Math Mech 59(4):579–585

    Article  MathSciNet  MATH  Google Scholar 

  • Meletti G, Abide S, Viazzo S, Krebs A, Harlander U (2020) Experiments and long-term high-performance computations on amplitude modulations of strato-rotational flows. Geophys Astrophys Fluid Dyn 10:1–25. https://doi.org/10.1080/03091929.2020.1795647

    Google Scholar 

  • Mercier MJ, Garnier NB, Dauxois T (2008) Reflection and diffraction of internal waves analyzed with the Hilbert transform. Phys Fluids 20(8):086601

    Article  MATH  Google Scholar 

  • Mercier MJ, Martinand D, Mathur M, Gostiaux L, Peacock T, Dauxois T (2010) New wave generation. J Fluid Mech 657:308–334

    Article  MATH  Google Scholar 

  • Oster G, Yamamoto M (1963) Density gradient techniques. Chem Rev 63(3):257–268

    Article  Google Scholar 

  • Ouriemi M, Aussillous P, Medale M, Peysson Y, Guazzelli E (2007) Determination of the critical shields number for particle erosion in laminar flow. Phys Fluids 19(6):061706

    Article  MATH  Google Scholar 

  • Peacock T, Tabaei A (2005) Visualization of nonlinear effects in reflecting internal wave beams. Phys Fluids 17(6):061702. https://doi.org/10.1063/1.1932309

    Article  MATH  Google Scholar 

  • Phillips OM (1966) The dynamics of the upper ocean. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Phillips OM (1970) On flows induced by diffusion in stably stratified fluids. Deep Sea Res 17(3):435–443

    Google Scholar 

  • Pustelnik N, Borgnat P, Flandrin P (2014) Empirical mode decomposition revisited by multicomponent non smooth convex optimization. Sig Process 102:313–331

    Article  Google Scholar 

  • Quaresma L, Vitorino J, Oliveira A, da Silva JCB (2007) Evidence of sediment resuspension by nonlinear internal waves on the western Portuguese mid-shelf. Mar Geol 246(2–4):123–143

    Article  Google Scholar 

  • Rilling G, Flandrin P, Gonçalvès P (2003) On Empirical Mode Decomposition and its algorithms. In: IEEE-EURASIP workshop on nonlinear signal and image processing (NSIP-03)

  • Rodenborn B, Kiefer H, Zhang H, Swinney H (2011) Harmonic generation by reflecting internal waves. Phys Fluids 23:026601

    Article  Google Scholar 

  • Sarkar S, Scotti A (2017) From topographic internal gravity waves to turbulence. Annu Rev Fluid Mech 49:195–220

    Article  MathSciNet  MATH  Google Scholar 

  • Schmitt J, Horne E, Pustelnik N, Joubaud S, Odier P (2015) An improved variational mode decomposition method for internal waves separation. In: Signal processing conference (EUSIPCO), 2015 23rd European, pp 1935–1939

  • Scotti A (2011) Inviscid critical and near-critical reflection of internal waves in the time domain. J Fluid Mech 674:464–488

    Article  MathSciNet  MATH  Google Scholar 

  • Tabaei A, Akylas T, Lamb K (2005) Nonlinear effects in reflecting and colliding internal wave beams. J Fluid Mech 526:217–243

    Article  MathSciNet  MATH  Google Scholar 

  • Thorpe SA (1987) On the reflection of a strain of finite-amplitude internal waves from a uniform slope. J Fluid Mech 178:279–302

    Article  MATH  Google Scholar 

  • Wunsch C (1969) Progressive internal waves on slopes. J Fluid Mech 35(1):131–144

    Article  MATH  Google Scholar 

  • Zhang HP, King B, Swinney HL (2008) Resonant generation of internal waves on a model continental slope. Phys Rev Lett 100(24):244504

    Article  Google Scholar 

  • Zosso D, Dragomiretskiy K, Bertozzi A, Weiss P (2017) Two-dimensional compact variational mode decomposition spatially compact and spectrally sparse image decomposition and segmentation. J Math Imaging Vis 58:294–320

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank T. Dauxois for insightful discussions. This work has been partially supported by the ONLITUR Grant ANR-2011-BS04-006-01 and achieved thanks to the resources of PSMN from ENS de Lyon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Horne.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horne, E., Schmitt, J., Pustelnik, N. et al. Variational mode decomposition for estimating critical reflected internal wave in stratified fluid. Exp Fluids 62, 110 (2021). https://doi.org/10.1007/s00348-021-03206-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-021-03206-7

Navigation