Skip to main content
Log in

Experimental investigation on single drop breakage in two-stream impinging microchannels

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Experimental study on drop breakage is carried out in the microchannels utilizing head-on impingement configuration by observing a single drop breakup process. In this study, the breakage of oil drops with a diameter ranging from 30 to 200 μm is investigated in the vicinity of flows impingement region by using high-speed photography at varied flow rate conditions. The most prominent phenomenon of the single drop breakup in the two streams impinging flow field is that the drop tends to break into multiple fragments. The breakage time and the number of daughter drops in the resulting population are statistically analysed and found to be highly dependent on the mother drop size and energy dissipation rate. Two different micro-system geometries, the 600–600 system and the 600–300 system, are compared to evaluate the advantages and disadvantages of swirl flow developed due to the off-axis layout of inlet channels in the 600–300 system. The results show that swirl flow establishes a low-pressure area acting as the dead zone, where a drop can be trapped and then drastically stretched to breakup. Compared with the 600–600 system, the detrimental effect of swirl flow inside the 600–300 system on increasing the breakage time can be offset by a much greater amount of daughter drops generated. In general, the 600–300 system performs more effectively than the 600–600 system because of the less isotropic flow feature. And this superiority is more distinct when the energy dissipation rate is higher.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

a :

Constant, –

A :

Constant, –

b :

Constant, –

B :

Constant, –

c 1,b :

Breakage model constant, –

c 2,b :

Breakage model constant, –

c :

Constant, –

C :

Constant, –

d :

Distance, μm

D :

Diameter of the drop, μm

D p :

Diameter of the daughter drops, μm

D 0 :

Diameter of the mother drop, μm

f :

Assembly drops distribution, –

H :

Height of the channel, μm

k b :

Breakage rate

m :

Constant, –

\(\dot{m}\) :

Mass flow rate, kg/s

n :

Number of daughter drops, –

p :

Pressure, bar

P :

Probability, –

P m :

Multiple breakage probability, –

N b :

Number of breakup events, –

N s :

Number of non-breakup events, –

\(\dot{Q}_{\mathrm{b}}\) :

Assembly of particles breakage rate

\(\dot{Q}_{\mathrm{c}}\) :

Assembly of particles coalescence rate

t :

Time, ms

t o :

Initial time, ms

t b :

Breakage time, ms

t b_0 :

Breakage start time, ms

t b_f :

Breakage finish time, ms

t d :

Deformation start time, ms

\(\bar{U}\) :

Superficial mean velocity, m/s

V :

Volume flowrate, mL/min

V m :

Volume of fluids mixing, m3

\(\delta\) :

Standard deviation, –

\(\varepsilon\) :

Energy dissipation rate, m2/s3

\(\mu\) :

Dynamic viscosity, mPa s

\(\rho\) :

Density, kg/m3

\(\beta\) :

Daughter drops size distribution, -

c:

Continuous phase

crit:

Critical

d:

Dispersed phase

e:

Emulsion

max:

Maximum

o:

Outflow

w:

Water

Ca:

Capillary number, –

DDSD:

Daughter drop size distribution, –

Re:

Reynolds number, –

SSI:

Swirl strength index, –

We:

Weber number, –

Wet :

Weber number in turbulent flow, –

We* :

Weber number defined in this study, –

References

  • Akbaridoust F, Philip J, Marusic I (2018) Assessment of miniature four-roll mill and a cross slot microchannel for high-strain-rate stagnation point flows. Meas Sci Technol 29:045302

    Article  Google Scholar 

  • Andersson R, Andersson B (2006) On the breakup of fluid particles in turbulent flows. AIChE J 52:2020–2030

    Article  Google Scholar 

  • Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364–366

    Article  Google Scholar 

  • Ashar M, Arlov D, Carlsson F, Innings F, Andersson R (2018) Single droplet breakup in a rotor-stator mixer. Chem Eng Sci 181:186–198

    Article  Google Scholar 

  • Bahmanyar H, Slater MJ (1991) Studies of drop break-up in liquid-liquid systems in a rotating disc contactor part I: conditions of no mass transfer. Chem Eng Technol 14:79–89

    Article  Google Scholar 

  • Barai N, Mandal N (2016) Breakup modes of fluid drops in confined shear flows. Phys Fluids 28:073302

    Article  Google Scholar 

  • Belkadi A, Tarlet D, Montillet A, Bellettre J, Massoli P (2015) Water-in-oil emulsification in a microfluidic impinging flow at high capillary numbers. Int J Multiphase Flow 72:11–23

    Article  Google Scholar 

  • Belkadi A, Tarlet D, Montillet A, Bellettre J, Massoli P (2016) Study of two impinging flow microsystems arranged in series. Application to emulsified biofuel production. Fuel 170:185–196

    Article  Google Scholar 

  • Belkadi A, Montillet A, Bellettre J (2018) Biofuel emulsifier using high-velocity impinging flows and singularities in microchannels. J Energy Resour Technol 140:012202

    Article  Google Scholar 

  • Bremond N, Bibette J (2012) Exploring emulsion science with microfluidics. Soft Matter 8:10549–10559

    Article  Google Scholar 

  • Chen HT, Middleman S (1967) Drop size distribution in agitated liquid–liquid systems. AIChE J 13:989–995

    Article  Google Scholar 

  • Coulaloglou CA, Tavlarides LL (1977) Description of interaction processes in agitated liquid-liquid dispersions. Chem Eng Sci 32:1289–1297

    Article  Google Scholar 

  • Cramer C, Fischer P, Windhab EJ (2004) Drop formation in a co-flowing ambient fluid. Chem Eng Sci 59:3045–3058

    Article  Google Scholar 

  • Eastwood CD, Armi L, Lasheras JC (2004) The breakup of immiscible fluids in turbulent flows. J Fluid Mech 502:309–333

    Article  MATH  Google Scholar 

  • Galinat S, Masbernat O, Guiraud P, Dalmazzone C, Noïk C (2005) Drop break-up in turbulent pipe flow downstream of a restriction. Chem Eng Sci 60:6511–6528

    Article  Google Scholar 

  • Galinat S, Garrido L, Masbernat O, Guiraud P, Risso F, Dalmazzone C, Noïk C (2007) Breakup of a drop in liquid-liquid pipe flow through an orifice. AIChE 53:56–68

    Article  Google Scholar 

  • Galus S, Kadzińska J (2015) Food applications of emulsion-based edible films and coatings. Trends Food Sci Technol 45:273–283

    Article  Google Scholar 

  • Geppert A, Terzis A, Lamanna G, Marengo M, Weigand B (2017) A bechmark study for the crown-type splashing dynamics of one and two-component droplet wall-film interactions. Exp Fluids 58:172

    Article  Google Scholar 

  • Grace HP (1982) Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem Eng Commun 14:225–277

    Article  Google Scholar 

  • Guildenbecher DR, López-Rivera C, Sojka PE (2009) Secondary atomization. Exp Fluids 46:371–402

    Article  Google Scholar 

  • Hančil V, Rod V (1988) Break-up of a drop in a stirred tank. Chem Eng Process 23:189–193

    Article  Google Scholar 

  • Herø EH, La Forgia N, Solsvik J, Jakobsen HA (2019) Determination of breakage parameters in turbulent fluid-fluid breakage. Chem Eng Technol 42:903–909

    Article  Google Scholar 

  • Hinze JO (1955) Fundamental of hydrodynamic mechanism of splitting in dispersion process. AIChE J 1:289–295

    Article  Google Scholar 

  • Hudson SD, Phelan FR, Handler MD, Cabral JT, Migler KB, Amis EJ (2004) Microfluidic analog of the four-roll mill. Appl Phys Lett 85:335–337

    Article  Google Scholar 

  • Janssen JJM, Boon A, Agterof WGM (1997) Influence of dynamic interfacial properties in plane hyperbolic flow. AICHE J 43:1436–1447

    Article  Google Scholar 

  • Ji Y, Bellettre J, Montillet A, Massoli P (2020) Fast oil-in-water emulsification in microchannel using head-on impinging configuration: effect of swirl motion. Int J Multiphase Flow 131:103402

    Article  MathSciNet  Google Scholar 

  • Johnson BK, Prud’homme RK (2003) Chemical processing and micromixing in confined impinging jets. AIChE J 49:2264–2282

    Article  Google Scholar 

  • Karimi M, Andersson R (2018) An exploratory study on fluid particles breakup rate models for the entire spectrum of turbulent energy. Chem Eng Sci 192:850–863

    Article  Google Scholar 

  • Kolmogorov AN (1949) On the breakage of drops in a turbulent flow. Dokl Akad Nauk SSSR 66:825–828

    Google Scholar 

  • Konno M, Aoki M, Saito S (1983) Scale effect on breakup process in liquid–liquid agitated tanks. J Chem Eng Jpn 16:312–319

    Article  Google Scholar 

  • Kumar MS, Bellettre J, Tazerout M (2009) The use of biofuel emulsions as fuel for diesel engines: a review. Proc ImechE Part A J Power Energy 223:729–742

    Article  Google Scholar 

  • Kuriyama M, Ono M, Tokanai H, Konno H (1995) The number of daughter drops formed per breakup of a highly viscous mother-drop in turbulent flow. J Chem Eng Jpn 28:477-479

  • Lasheras JC, Eastwood C, Martínez-Bazán C, Montañés JL (2002) A review of statistical models for the break-up of an immiscible fluid immerse into a fully developed turbulent flow. Int J Multiphase Flow 28:247–278

    Article  MATH  Google Scholar 

  • Liao Y, Lucas D (2009) A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chem Eng Sci 64:3389–3406

    Article  Google Scholar 

  • Maaß S, Kraume M (2012) Determination of breakage rates using single drop experiments. Chem Eng Sci 70:146–164

    Article  Google Scholar 

  • Maaß S, Gäbler A, Zaccone A, Paschedag AR, Kraume M (2007) Experimental investigations and modelling of breakage phenomena in stirred liquid/liquid systems. Chem Eng Res Des 85:703–709

    Article  Google Scholar 

  • Maaß S, Buscher S, Hermann S, Kraume M (2011) Analysis of particle strain in stirred bioreactors by drop breakage investigations. Biotechnol J 6:979–992

    Article  Google Scholar 

  • Mashayek F, Ashgriz N (1998) Instability of liquid coatings on cylindrical surfaces. Phys Fluids 7:2143–2153

    Article  MATH  Google Scholar 

  • Nakashima T, Shimizu M (1988) Advanced inorganic separative membranes and their new developments. Chem Eng Symp Ser 21:93

    Google Scholar 

  • Narayan S, Makhnenko I, Moravec DB, Hauser BG, Dallas AJ (2020) Insights into the microscale coalescence behavior of surfactant stabilized droplets using a microfluidic hydrodynamic trap. Langmuir 36:9827–9842

    Article  Google Scholar 

  • Ohtake T, Hano T, Takagi K, Nakashio F (1987) Effects of viscosity on drop diameter of w/o emulsion dispersed in a stirred tank. J Chem Eng JPN 20:443–447

    Article  Google Scholar 

  • Pouton CW (1997) Formation of self-emulsifying drug delivery systems. Adv Drug Deliv Rev 25:47–58

    Article  Google Scholar 

  • Rallison JM (1984) The deformation of small viscous drops and bubbles in shear flows. Annu Rev Fluid Mech 16:45–66

    Article  MATH  Google Scholar 

  • Rayleigh L (1878) On the instability of jets. Proc Lond Math Soc 10:4–13

    Article  MathSciNet  MATH  Google Scholar 

  • Razzaghi K, Shahraki F (2016) Theoretical model for multiple breakup of fluids particles in turbulent flow field. AIChE J 62:4508–4525

    Article  Google Scholar 

  • Saha A, Lee JD, Basu S, Kumar R (2012) Breakup and coalescence characteristics of a hollow cone swirling spray. Phys Fluids 24:124103

    Article  Google Scholar 

  • Saijadi B, Raman AAA, Shah RSSRE, Ibrahim S (2013) Review on applicable breakup/coalescence models in turbulent liquid-liquid flows. Rev Chem Eng 29:131–158

    Google Scholar 

  • Shanmugadas KP, Chakravarthy SR, Chiranthan R, Sekar J, Krishnaswaml S (2018) Characterization of wall filming and atomization inside a gas-turbine swirl injector. Exp Fluids 59:151

    Article  Google Scholar 

  • Siddiqui SW (2014) The effects of oils, low molecular weight emulsifiers and hydrodynamics on oil-in-water emulsification in confined impinging jet mixer. Colloids Surf A Physicochem Eng Aspects 443:8–18

    Article  Google Scholar 

  • Siddiqui SW, Zhao Y, Kukukova A, Kresta SM (2009) Characteristics of a confined impinging jet reactor: energy dissipation, homogeneous and heterogeneous reaction products, and effect of unequal flow. Ind Eng Chem Res 48:7945–7958

    Article  Google Scholar 

  • Solsvik J, Jakobsen HA (2015a) The foundation of the population balance equation—a review. J Dispers Sci Technol 36:510–520

    Article  Google Scholar 

  • Solsvik J, Jakobsen HA (2015b) Single drop breakup experiments in stirred liquid–liquid tank. Chem Eng Sci 131:219–234

    Article  Google Scholar 

  • Solsvik J, Jakobsen HA (2016) A Review of the statistical turbulence theory required extending the population balance closure models to the entire spectrum of turbulence. AIChE J 62:1795–1820

    Article  Google Scholar 

  • Solsvik J, Tangen S, Jakobsen HA (2013) On the constitutive equations for fluid particle breakage. Rev Chem Eng 29:241–356

    Article  Google Scholar 

  • Solsvik J, Maaß S, Jakobsen HA (2016) Definition of the single drop breakup event. Ind Eng Chem 55:2872–2882

    Article  Google Scholar 

  • Stone HA (1994) Dynamics of drop deformation and breakup in viscous fluids. Annu Rev Fluid Mech 26:65–102

    Article  MathSciNet  MATH  Google Scholar 

  • Stone HA, Leal LG (1989) Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid. J Fluid Mech 198:399–427

    Article  Google Scholar 

  • Stone HA, Bentley BJ, Leal LG (1986) An experimental study of transient effects in the breakup of viscous drops. J Fluid Mech 173:131–158

    Article  Google Scholar 

  • Tanyeri M, Johnson-Chavarria EM, Schroeder CM (2010) Hydrodynamic trap for single particles and cells. Appl Phys Lett 96:224101

    Article  Google Scholar 

  • Taylor GI (1932) The viscosity of a fluid containing small drops of another fluid. Proc R Soc Lond A Math Phys Eng Sci 138:41–48

    MATH  Google Scholar 

  • Taylor GI (1934) The formation of emulsions in definable fields of flow. Proc R Soc Lond A Math Phys Eng Sci 146:510–523

    Google Scholar 

  • Theron F, Le Sauze N (2011) Comparison between three static mixers for emulsification in turbulent flow. Int J Multiphase Flow 37:488–500

    Article  Google Scholar 

  • Thorsen T, Roberts R, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle generating microfluidic device. Phys Rev Lett 86:4163–4166

    Article  Google Scholar 

  • Tjahjadi M, Stone HA, Ottino JM (1992) Satellite and subsatellite formation in capillary breakup. J Fluid Mech 243:297–317

    Article  Google Scholar 

  • Tsaoulidis D, Angeli P (2017) Liquid-liquid dispersions in intensified impinging-jets cells. Chem Eng Sci 171:149–159

    Article  Google Scholar 

  • Vigolo D, Radl S, Stone HA (2014) Unexpected trapping of particles at a T junction. PNAS 111:4770–4775

    Article  Google Scholar 

  • Walstra P (1993) Principles of emulsion formation. Chem Eng Sci 48:333–349

    Article  Google Scholar 

  • Zhang J, Li W, Xu X, Liu H, Wang F (2019) Experimental investigation of the three dimensional flow regimes in a cross-shaped reactor. Phys Fluids 31:034105

    Article  Google Scholar 

  • Zhao CX, Middelberg APJ (2011) Two-phase microfluidic flows. Chem Eng Sci 66:1394–1411

    Article  Google Scholar 

  • Zhu P, Wang L (2017) Passive and active droplet generation with microfluidics: a review. Lab Chip 17:34–75

    Article  Google Scholar 

Download references

Funding

Région Pays de la Loire (Chair “Connect Talent”) on Optical Diagnostics for Energy.

Author information

Authors and Affiliations

Authors

Contributions

YJ: formal analysis and investigation, writing—original draft; JB: conceptualization, project administration, funding acquisition, supervision; AM: conceptualization, formal analysis, validation; PM: methodology, funding acquisition, supervision.

Corresponding author

Correspondence to Jérôme Bellettre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Bellettre, J., Montillet, A. et al. Experimental investigation on single drop breakage in two-stream impinging microchannels. Exp Fluids 62, 17 (2021). https://doi.org/10.1007/s00348-020-03124-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-020-03124-0

Navigation