Skip to main content
Log in

The final stages of transition and the reattachment region in transitional separation bubbles

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The final stages of transitional phenomena in laminar separation bubbles play a key role in their reattachment process, and they condition the boundary layer properties and flow structure after reattachment. In this experimental study, the evolution of the perturbation velocity spectra found in this zone is first presented, showing the nonlinear growth of instabilities in their path to develop fully turbulent spectra. The study of the average flow field allows the scaling of the reattachment region, both in its extension and in the characterization of the integral boundary layer magnitudes. Experimental laws are proposed for the evolution of the momentum thickness and of the shape factor. In addition, a universal, wake-like mean velocity profile is found shortly after the reattachment station. The phase-locked characterization technique allows measurements conditioned to the presence of a fluid event. This technique is used to track the evolution of large-scale structures, whose dynamics is seen to dominate the fluid behavior in the reattachment zone. The simultaneous existence of two vortex blobs is found to characterize this flow region, with the longest lived one being convected toward the wall and stretched. This process results in the fast breakdown of the large-scale vorticity structure and the sudden formation of 3-D, small scales that promote the rapid flow evolution toward a fully developed turbulent state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

E :

Power spectral density

f :

Frequency

h ω :

LSB height defined from maximum vorticity wall normal distance

h dmax :

LSB height defined from separation streamline wall normal distance

L I :

Length of the laminar region

L II :

Length of the average reattachment region

L d :

Inviscid velocity characteristic deceleration length

Q :

2-D Q-criterion scalar \(Q=\frac{\partial u}{\partial x}\frac{\partial v}{\partial y}-\frac{\partial u}{\partial y}\frac{\partial v}{\partial x}\)

Re Ld :

Reynolds number based on L d and maximum edge velocity

t :

Time

T :

Period

uv :

Streamwise and wall normal velocity components

u c :

Vortex blobs convection velocity

u e :

Streamwise edge velocity

u inv :

Inviscid solution streamwise velocity over the plate

\(\overline{u^{\prime2}},\overline{v^{\prime2}},\overline{u'v'}\) :

Reynolds stresses

xyz :

Streamwise, wall normal, spanwise coordinates

δ :

Flag function

λ :

Wavelength

θ :

Momentum thickness

ϕ :

Generic variable

\(\varphi\) :

Phase and phase information signal

()0 :

Value at the beginning of deceleration (test section throat)

()I :

Value at the end of the laminar region

()s :

Value at separation

()II :

Value at the average reattachment station

\(\widetilde{\phi}\) :

Non-dimensional variable

\(\overline{\phi}\) :

Temporal averaged value

\(\phi^{\prime}\) :

Temporal fluctuating part of a variable

\(\hat{\phi}\) :

Phase-averaged value

\(\breve{\phi}\) :

Filtered signal

References

  • Berkooz G, Holmes P, Lumley J (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25:539–575

    Article  MathSciNet  Google Scholar 

  • Boiko A, Grek G, Dovgal AV, Kozlov V (2002) The origin of turbulence in near wall flows. Springer, Berlin

    Book  MATH  Google Scholar 

  • Bose N (1985) Digital filters: theory and applications. Elsevier Science Publishing Co. Inc., Amsterdam

    MATH  Google Scholar 

  • Burgmann S, Schröder (2008) Investigation of the vortex induced unsteadiness of a separation bubble via time-resolved and scanning PIV measurements. Exp Fluids 45:676–691

    Article  Google Scholar 

  • Burgmann S, Brücker C, Schröder W (2006) Scanning PIV measurements of a laminar separation bubble. Exp Fluids 41:319–326

    Article  Google Scholar 

  • Denton JD (1993) The 1993 IGTI scholar lecture: loss mechanisms in turbomachines. J Turbomach 115(4):621–656

    Article  Google Scholar 

  • Diwan SS, Ramesh ON (2009) On the origin of the inflectional instability of a laminar separation bubble. J Fluid Mech 629:263–298

    Article  MATH  Google Scholar 

  • Dunham J (1972) Predictions of boundary layer transition on turbomachinery blades. AGARDoGRAPH AG-164, pp 55–71

  • Frisch U (1995) Turbulence: the legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Gaster M (1966) The structure and behavior of laminar separation bubbles. NACA CP-4, PT II, pp 813–852

  • González-Martínez E (2002) Estructura turbulenta en combustores LPP y mezclado. Ph.D. thesis, ETSI Aeronáuticos. Universidad Politécnica de Madrid

  • Hain R, Kähler C, Radespiel R (2009) Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils. J Fluid Mech 630:129–153

    Article  MATH  Google Scholar 

  • Hatman A, Wang T (1999) A prediction model for separated-flow transition. J Turbomach 121(3):594–602

    Article  Google Scholar 

  • Horton H (1969) A semi-empirical theory for the growth and bursting of laminar separation bubbles. ARC CP 1073

  • Kopp G, Ferre J, Giralt F (1997) The use of pattern recognition and proper orthogonal decomposition in identifying the structure of fully-developed free turbulence. J Fluids Eng 119:289–297

    Article  Google Scholar 

  • Kovasznay L (1978) Measurement in intermittent periodic flow. In: Proceedings of the dynamic flow conference, pp 133–159

  • Lázaro B, González E, Vázquez R (2007) Unsteady loss production mechanisms in low Reynolds number, high lift, low pressure turbine profiles. In: Proceedings of the ASME Turbo Expo 2007 (GT2007-28142)

  • Malkiel E, Mayle RE (1996) Transition in a separation bubble. J Turbomach 118(4):752–759

    Article  Google Scholar 

  • Marxen O, Lang M, Rist U (2013) Vortex formation and vortex breakup in a laminar separation bubble. J Fluid Mech 728:58–90

    Article  MathSciNet  Google Scholar 

  • Mayle R (1991) The 1991 IGTI scholar lecture: the role of laminar-turbulent transition in gas turbine engines. J Turbomach 113(4):509–536

    Article  Google Scholar 

  • McAuliffe B, Yaras M (2007) Transition mechanisms in separation bubbles under low and elevated freestream turbulence. In: Proceedings of ASME Turboexpo 2007 (GT2007-27605)

  • McAuliffe B, Yaras M (2005) Separation-bubble-transition measurements on a low-Re airfoil using particle image velocimetry. In: Proceedings of ASME Turboexpo 2005 (GT2005-68663)

  • O’Meara M, Mueller T (1987) Laminar separation bubble characteristics on an airfoil at low Reynolds numbers. AIAA J Propuls Power 25(8):1033–1041

    Article  Google Scholar 

  • Pope S (2001) Turbulent flows. Cambridge University Press, Cambridge

    Google Scholar 

  • Roberts WB (1980) Calculation of laminar separation bubbles and their effect on airfoil performance. AIAA J 18(1):25–31. doi:10.2514/3.50726

  • Theofilis V (2003) Advances in global linear instability analysis of nonparallel and three-dimensional flow. Prog Aerosp Sci 49:249–315

    Article  Google Scholar 

  • Theofilis V (2011) Global linear instability. Annu Rev Fluid Mech 43:319–352

    Article  MathSciNet  Google Scholar 

  • Watmuff J (1999) Evolution of a wave packet into vortex loops in a laminar separation bubble. J Fluid Mech 397:119–169

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang W, Hain R, Kähler C (2008) Scanning PIV investigation of the laminar separation bubble on a SD7003 airfoil. Exp Fluids 45:725–743

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Spanish Ministry of Education (under projects TRA2005-01249, and TRA2009-09404, and PhD internship BES-2006-13926), the European Commission through the Sixth Framework Program project “Environmentally Friendly Aeroengines (VITAL)”, and Grants P020130430 and P060130077 from “Industria de Turbo Propulsores S.A. (ITP)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Serna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serna, J., Lázaro, B.J. The final stages of transition and the reattachment region in transitional separation bubbles. Exp Fluids 55, 1695 (2014). https://doi.org/10.1007/s00348-014-1695-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1695-7

Keywords

Navigation