Skip to main content
Log in

Decay of passive-scalar fluctuations in slightly stretched grid turbulence

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Isotropic turbulence is closely approximated by stretching a grid flow through a short (1.36:1) secondary contraction. The flow is operated at small values of the Taylor microscale Reynolds number (about 25–55) and is slightly heated just downstream of the grid, so that the temperature serves as a passive scalar and the initial velocity/thermal length-scale ratio is about 1. For the same grid, the contraction reduces the skewness and kurtosis of the thermal fluctuations and their derivative. The thermal fluctuations and their mean dissipation rates follow a power-law rate of decay that depends on the geometry of the grid. Comparison with velocity measurements shows that, for three different grids, the ratio between the temperature and velocity power-law exponents closely matches the velocity/thermal timescale ratio. For the present measurements, the timescale ratio is slightly larger than 1 but does not exceed 1.2, in accordance with the proposal by Corrsin (J Aeronaut Sci 18(6):417–423, 1951b).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Antonia RA, Browne LWB, Chambers AJ (1981) Determination of time constants of cold wires. Rev Sci Instrum 52(9):1382–1385

    Article  Google Scholar 

  • Antonia RA, Chambers AJ, Van Atta CW, Friehe CA, Helland KN (1978) Skewness of temperature derivative in a heated grid flow. Phys Fluids 21(3):509–510

    Article  Google Scholar 

  • Antonia RA, Lavoie P, Djenidi L, Benaissa A (2010) Effect of a small axisymmetric contraction on grid turbulence. Exp Fluids 49:3–10

    Article  Google Scholar 

  • Antonia RA, Smalley RJ, Zhou T, Anselmet F, Danaila L (2004) Similarity solution of temperature structure functions in decaying homogeneous isotropic turbulence. Phys Rev E 69:016305

    Article  Google Scholar 

  • Batchelor GK (1953) The theory of homogeneous turbulence. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Batchelor GK, Proudman I (1956) The large-scale structure of homogeneous turbulence. Proc R Soc Lond Ser A Math Phys Sci 248(949):369–405

    MathSciNet  MATH  Google Scholar 

  • Comte-Bellot G, Corrsin S (1966) The use of a contraction to improve the isotropy of grid-generated turbulence. J Fluid Mech 25(4):657–682

    Article  Google Scholar 

  • Comte-Bellot G, Corrsin S (1971) Simple Eulerian time correlation of full- and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence. J Fluid Mech 48(2):273–337

    Article  Google Scholar 

  • Corrsin S (1951a) On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J Appl Phys 22(4):469–473

    Article  MathSciNet  MATH  Google Scholar 

  • Corrsin S (1951b) The decay of isotropic temperature fluctuations in an isotropic turbulence. J Aeronaut Sci 18(6):417–423

    MathSciNet  MATH  Google Scholar 

  • Dryden HL (1943) A review of the statistical theory of turbulence. Q Appl Math 1:7–42

    MathSciNet  MATH  Google Scholar 

  • Durbin PA (1980) A stochastic model of two-particle dispersion and concentration fluctuations in homogeneous turbulence. J Fluid Mech 100(2):279–302

    Article  MathSciNet  MATH  Google Scholar 

  • Durbin PA (1982) Analysis of the decay of temperature fluctuations in isotropic turbulence. Phys Fluids 25(8):1328–1332

    Article  MathSciNet  MATH  Google Scholar 

  • George WK (1992a) Self-preservation of temperature fluctuations in isotropic turbulence. In: Gatski TB, Sarkar S, Speziale CG (eds) Studies in turbulence. Springer, New York, pp 514–528

  • George WK (1992b) The decay of homogeneous isotropic turbulence. Phys Fluids 4(7):1492–1509

    Article  MathSciNet  MATH  Google Scholar 

  • George WK, Wang H, Wollblad C, Johansson TG (2001) ‘Homogeneous turbulence’ and its relation to realizable flows. In: Dally BB (ed) Proceedings of the 14th Australas. Fluid mechanics conference. Adelaide, Australia, pp 41–48

  • Kármán T, Howarth L (1938) On the statistical theory of isotropic turbulence. Proc R Soc Lond Ser A Math Phys Sci 164(917):192–215

    Article  Google Scholar 

  • Krogstad PÅ, Davidson PA (2010) Is grid turbulence Saffman turbulence?. J Fluid Mech 642:373–394

    Article  MathSciNet  MATH  Google Scholar 

  • Lavoie P (2006) Effects of initial conditions on decaying grid turbulence. Ph.D. Thesis, University of Newcastle, Newcastle, Australia

  • Lavoie P, Djenidi L, Antonia RA (2007) Effects of initial conditions in decaying turbulence generated by passive grids. J Fluid Mech 585:395–420

    Article  MATH  Google Scholar 

  • Mills RR, Corrsin S (1959) Effect of contraction on turbulence and temperature fluctuations generated by a warm grid. Memo 5-5-59W, National Aeronautics and Space Administration.

  • Mills RR, Kistler AL, O’Brien V, Corrsin S (1958) Turbulence and temperature fluctuations behind a heated grid. Tech. Note 4288, National Advisory Committee for Aeronautics

  • Mohamed MS, LaRue JC (1990) The decay power law in grid-generated turbulence. J Fluid Mech 219:195–214

    Article  Google Scholar 

  • Monin AS, Yaglom AM (1975) Statistical fluid mechanics: mechanics of turbulence, vol 2. The MIT Press, Cambridge

    Google Scholar 

  • Mydlarski L, Warhaft Z (1996) On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J Fluid Mech 320:331–368

    Article  Google Scholar 

  • Mydlarski L, Warhaft Z (1998) Passive scalar statistics in high-Péclet-number grid turbulence. J Fluid Mech 358:135–175

    Article  Google Scholar 

  • Prandtl L (1933) Attaining a steady air stream in wind tunnels. Tech. Memo 726, National Advisory Committee for Aeronautics

  • Saffman PG (1967) The large-scale structure of homogeneous turbulence. J Fluid Mech 27(3):581–593

    Article  MathSciNet  MATH  Google Scholar 

  • Sawford BL (2004) Micro-mixing modelling of scalar fluctuations for plumes in homogeneous turbulence. Flow Turb Comb 72:133–160

    Article  MATH  Google Scholar 

  • Sawford BL, Hunt JCR (1986) Effects of turbulence structure, molecular diffusion and source size on scalar fluctuations in homogeneous turbulence. J Fluid Mech 165:373–400

    Article  MATH  Google Scholar 

  • Sepri P (1976) Two-point turbulence measurements downstream of a heated grid. Phys Fluids 19(12):1876–1884

    Article  Google Scholar 

  • Sirivat A, Warhaft Z (1983) The effect of a passive cross-stream temperature gradient on the evolution of temperature variance and heat flux in grid turbulence. J Fluid Mech 128:323–346

    Article  Google Scholar 

  • Sreenivasan KR, Tavoularis S, Henry R, Corrsin S (1980) Temperature fluctuations and scales in grid-generated turbulence. J Fluid Mech 100(3):597–621

    Article  Google Scholar 

  • Taylor GI (1921) Diffusion by continuous movements. Proc Lond Math Soc 20(1):196–212

    Article  MATH  Google Scholar 

  • Taylor GI (1935a) Statistical theory of turbulence 4—diffusion in a turbulent air stream. Proc R Soc Lond Ser A Math Phys Sci 151(873):465–478

    Article  Google Scholar 

  • Taylor GI (1935b) Turbulence in a contracting stream. Z Angew Math Mech 15:91–96

    Article  MATH  Google Scholar 

  • Tennekes H, Lumley JL (1972) A first course in turbulence. The MIT Press, Cambridge

    Google Scholar 

  • Tong C, Warhaft Z (1994) On passive scalar derivative statistics in grid turbulence. Phys Fluids 6(6):2165–2176

    Article  Google Scholar 

  • Uberoi MS (1956) Effect of wind-tunnel contraction on free-stream turbulence. J Aeronaut Sci 23(8):754–764

    Google Scholar 

  • Viswanathan S, Pope SB (2008) Turbulent dispersion from line sources in grid turbulence. Phys Fluids 20:101514

    Article  Google Scholar 

  • Warhaft Z (1980) An experimental study of the effect of uniform strain on thermal fluctuations in grid-generated turbulence. J Fluid Mech 99(3):545–573

    Article  Google Scholar 

  • Warhaft Z (1984) The interference of thermal fields from line sources in grid turbulence. J Fluid Mech 144:363–387

    Article  Google Scholar 

  • Warhaft Z (2000) Passive scalars in turbulent flows. Ann Rev Fluid Mech 32:203–240

    Article  MathSciNet  Google Scholar 

  • Warhaft Z, Lumley JL (1978) An experimental study of the decay of temperature fluctuations in grid-generated turbulence. J Fluid Mech 88(4):659–684

    Article  Google Scholar 

  • Yeh TT, Van Atta CW (1973) Spectral transfer of scalar and velocity fields in heated-grid turbulence. J Fluid Mech 58(2):233–261

    Article  Google Scholar 

  • Zhou T, Antonia RA, Chua LP (2002) Performance of a probe for measuring turbulent energy and temperature dissipation rates. Exp Fluids 33:334–345

    Google Scholar 

  • Zhou T, Antonia RA, Danaila L, Anselmet F (2000) Transport equations for the mean energy and temperature dissipation rates in grid turbulence. Exp Fluids 28:143–151

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Australian Research Council and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.K., Benaissa, A., Djenidi, L. et al. Decay of passive-scalar fluctuations in slightly stretched grid turbulence. Exp Fluids 53, 909–923 (2012). https://doi.org/10.1007/s00348-012-1331-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-012-1331-3

Keywords

Navigation