Skip to main content
Log in

Shock wave-induced vortex loops emanating from nozzles with singular corners

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The focus of the current study is to examine experimentally the diffracted shock wave pattern and the consequent vortex loop formation, propagation, and decay from nozzles having singular corners. Non-intrusive qualitative and quantitative techniques: schlieren, shadowgraphy, and particle image velocimetry (PIV) are employed to analyze the induced flow-fields. Eye-shaped nozzles were used with the corner joints representing singularities. The length of the minor axes are a = 6 and 15 mm, with the major axis b = 30 mm for both cases. The experiments are performed for flow Reynolds numbers in the range 0.8 × 105 and 4.6 × 105. Air is used in both driver and driven sections of the shock tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Anderson JD (1990) Modern compressible flow, with historical perspective, 2nd edn. McGraw-Hill, Inc, New York

    Google Scholar 

  • Archer PJ, Thomas TG, Coleman GN (2008) Direct numerical simulation of vortex ring evolution from the laminar to the early turbulent regime. J Fluid Mech 598:201–226

    Article  MATH  MathSciNet  Google Scholar 

  • Arakeri JH, Das D, Krothapalli A, Lourenco L (2004) Vortex ring formation at the open end of a shock tube: a particle image velocimetry study. Phys Fluids 16:1008–1019

    Article  Google Scholar 

  • Baird JP (1987) Supersonic vortex rings. Proc R Soc Lond A 409:59–65

    Article  Google Scholar 

  • Bergdorf M, Koumoutsakos P, Leonard A (2007) Direct numerical simulations of vortex rings at \(Re_{\Upgamma}=7500.\) J Fluid Mech 581:495–505

    Article  MATH  Google Scholar 

  • Broadbent EG, Moore DW (1987) The interaction of a vortex ring and a coaxial supersonic jet. Proc R Soc Lond A 409:47–57

    Article  MATH  Google Scholar 

  • Brouillette M, Hebert C (1997) Propagation and interaction of shock-generated vortices. Fluid Dyn Res 21:159–169

    Article  Google Scholar 

  • Bykovets AP, Repin VB (1980) Formation of a vortex rings at the open end of a pulsed chamber. Combustion, Explosion, Shock Waves 16:73–77

    Article  Google Scholar 

  • Chatterjee A (1999) Shock wave deformation in shock-vortex interactions. Shock Waves 9:95–105

    Article  MATH  Google Scholar 

  • Dazin A, Dupont P, Stanislas M (2006) Experimental characterization of the instability of the vortex rings. Part II: Non-linear phase. Exp Fluids 41:401–413

    Article  Google Scholar 

  • Dhanak MR, DeBernardinis B (1981) The evolution of an elliptic vortex ring. J Fluid Mech 109:189–216

    Article  MATH  Google Scholar 

  • Ding Z, Hussaini MY, Erlebacher G, Krothapalli A (2001) Computational study of shock interaction with a vortex ring. Phys Fluids 13:3033–3048

    Article  Google Scholar 

  • Dziedzic M, Leutheusser HJ (1996) An experimental study of viscous vortex rings. Exp Fluids 21:315–324

    Article  Google Scholar 

  • Golub VV (1994), Development of shock wave and vortex ring structures in unsteady jets. Shock Waves 3:279–285

    Article  Google Scholar 

  • Grinstein FF, DeVore CR (1996) Dynamics of coherent structures and transition to turbulence in free square jets. Phys Fluids 8:1237–1251

    Article  MATH  MathSciNet  Google Scholar 

  • Holman JP (1994) Experimental methods for engineers. McGraw-Hill, Inc, New York

    Google Scholar 

  • Howard LN, Matthews DL (1956) On the vortices produced in shock diffraction. J Appl Phys 27:223–231

    Article  MATH  Google Scholar 

  • Hillier R (1994) Computation of shock wave diffraction at a ninety degrees convex edge. Shock Waves 1:89–98

    Article  Google Scholar 

  • Jiang Z, Onodera O, Takayama K (1999) Evolution of shock waves and the primary vortex loop discharged from a square cross-section tube. Shock Waves 9:1–10

    Article  Google Scholar 

  • Krothapalli A, Rajkuperan E, Alvi F, Lourenco L (1999) Flow field and noise characteristics of a supersonic impinging jet. J Fluid Mech 392:155–181

    Article  MATH  Google Scholar 

  • Kontis K, Kounadis D, An R, Zare-Behtash H (2008) Vortex ring interaction studies with a cylinder and a sphere. Int J Heat Fluid Flow 29:1380–1392

    Article  Google Scholar 

  • Kontis K, An R, Zare-Behtash H, Kounadis D (2008) Head-on collision of shock wave induced vortices with solid and perforated walls. Phys Fluids 20

  • Liu Z, Zheng Y, Jia L, Zhang Q (2005) Study of bubble induced flow structure using PIV. Chem Eng Sci 60:3537–3552

    Article  Google Scholar 

  • Maxworthy T (1972) The structure and stability of vortex rings. J Fluid Mech 51:15–32

    Article  Google Scholar 

  • Melling A (1997) Tracer particles and seeding for particle image velocimetry. Meas Sci Technol 8:1406–1416

    Article  Google Scholar 

  • Mirels H (1955) Laminar boundary layer behind shock advancing into stationary fluid. NACA TN 3401

  • Minota T (1993) Interaction of a shock wave with a high-speed vortex ring. Fluid Dyn Res 12:335–342

    Article  Google Scholar 

  • Minota T, Nishida M, Lee MG (1997) Shock formation by compressible vortex ring impinging on a wall. Fluid Dyn Res 12:139–157

    Article  Google Scholar 

  • Moore DW (1985) The effect of compressibility on the speed of propagation of a vortex ring. Proc R Soc Lond A 397:87–97

    Article  MATH  Google Scholar 

  • Nakashima Y, Inoue O (2008) Sound generation by a vortex ring collision with a wall. Phys Fluids 20:126104

    Article  Google Scholar 

  • Ohyagi S, Obara T, Hoshi S, Cai P, Yoshihashi T (2002) Diffraction and re-initiation of detonations behind a backward-facing step. Shock Waves 12:221–226

    Article  Google Scholar 

  • Ortiz-Villafuerte J, Schmidl WD, Hassan YA (2000) Three-dimensional ptv study of the surrounding flow and wake of a bubble rising in a stagnant liquid. Exp Fluids 29:S202–S210

    Article  Google Scholar 

  • Oshima Y, Izutsu N, Oshima K, Hussain AKMF (1988) Bifurcation of an elliptic vortex ring. Fluid Dyn Res 3:133–139

    Article  Google Scholar 

  • Prangé R, Pallier L, Hansen KC, Howard R, Vourlidas A, Courtin R, Parkinson C (2004), An interplanetary shock traced by planetary auroral storms from the Sun to Saturn. Nature 432:78–81

    Article  Google Scholar 

  • Raffel M, Willert CE, Kompenhans J (1998) Particle image velocimetry. Springer, Berlin

    Google Scholar 

  • Settles GS (2001) Schlieren and Shadowgraph techniques. Springer, Berlin

    MATH  Google Scholar 

  • Shepherd JE, Schultz E, Akbar R (2000) Detonation diffraction. In: Ball G, Hillier R, Roberts G (eds) Proceedings of the 22nd international symposium on shock waves 1, pp 41–48

  • Shimizu T, Watanabe Y, Kambe T (2000) Scattered waves generated by shock wave and vortex ring interaction. Fluid Dyn Res 27:65–90

    Article  Google Scholar 

  • Shusser M, Gharib M (2000) Energy and velocity of a forming vortex ring. Phys Fluids 12:618–621

    Article  MATH  MathSciNet  Google Scholar 

  • Sivier S, Loth E, Baum J, Löhner R (1992) Vorticity produced by shock wave diffraction. Shock Waves 2:31–41

    Article  Google Scholar 

  • Sun M, Takayama K (2003) Vorticity production in shock diffraction. J Fluid Mech 478:237–256

    Article  MATH  MathSciNet  Google Scholar 

  • Tam C, Ahuja KK (1990) Theoretical model of discrete tone generation by impinging jets. J Fluid Mech 214:67–87

    Article  MathSciNet  Google Scholar 

  • Takayama F, Ishii Y, Sakurai A, Kambe T (1993) Self-intensification in shock wave and vortex interaction. Fluid Dyn Res 12:343–348

    Article  Google Scholar 

  • Takamoto M, Izumi K (1981) Experimental observation of stable arrangement of vortex rings. Phys Fluids 24:1582–1583

    Article  Google Scholar 

  • Tokugawa N, Ishii Y, Sugano K, Takayama F, Kambe T (1997) Observation and analysis of scattering interaction between a shock wave and a vortex ring. Fluid Dyn Res 21:185–199

    Article  Google Scholar 

  • Weigand A, Gharib M (1994) On the decay of a turbulent vortex ring. Phys Fluids 6:3806–3808

    Article  Google Scholar 

  • Wilson J, Sgondea A, Paxson DE, Rosenthal BN (2007) Parametric investigation of thrust augmentation by ejectors on a pulsed detonation tube. J Propulsion Power 23:108–115

    Article  Google Scholar 

  • Yoon JH, Lee SJ (2003) Investigation of the near-field structure of an elliptic jet using stereoscopic particle image velocimetry. Meas Sci Technol 14:2034–2046

    Article  Google Scholar 

  • Zhao W, Frankel SH, Mongeau LG (2000) Effects of trailing jet instability on vortex ring formation. Phys Fluids 12:589–596

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the technical staff at The University of Manchester for their assistance and for the help and advice of Dr. Martin Hyde (TSI) for the installation and setup of the PIV system. The support of the EPSRC Engineering Instrument Pool especially Mr. Adrian Walker, for the loan of the PIV system, is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kontis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zare-Behtash, H., Kontis, K., Gongora-Orozco, N. et al. Shock wave-induced vortex loops emanating from nozzles with singular corners. Exp Fluids 49, 1005–1019 (2010). https://doi.org/10.1007/s00348-010-0839-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-010-0839-7

Keywords

Navigation