Skip to main content
Log in

Three-dimensional Voronoï imaging methods for the measurement of near-wall particulate flows

  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A set of stereoscopic imaging techniques is proposed for the measurement of rapidly flowing dispersions of opaque particles observed near a transparent wall. The methods exploit projective geometry and the Voronoï diagram. They rely on purely geometrical principles to reconstruct 3D particle positions, concentrations, and velocities. The methods are able to handle position and motion ambiguities, as well as particle-occlusion effects, difficulties that are common in the case of dense dispersions of many identical particles. Fluidization cell experiments allow validation of the concentration estimates. A mature debris-flow experimental run is then chosen to test the particle-tracking algorithm. The Voronoï stereo methods are found to perform well in both cases, and to present significant advantages over monocular imaging measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian RJ (1991) Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23:261–304

    Article  Google Scholar 

  • Ahuja N (1982) Dot pattern processing using Voronoï neighborhoods. IEEE PAMI 4:336–343

    Google Scholar 

  • Armanini A, Fraccarollo L, Guarino L, Martino R, Bin Y (2000) Experimental analysis of the general features of uniform debris flow over a loose bed. In: Wieczorek GF, Naeser ND (eds) Proceedings of the 2nd International Conference on Debris-flow hazard mitigation, Taipei, August 2000. Balkema, Rotterdam, pp 327–334

    Google Scholar 

  • Azanza E, Chevoir F, Moucheront P (1999) Experimental study of collisional granular flows down an inclined plane. J Fluid Mech 400:199–227

    Article  MATH  Google Scholar 

  • Bernardeau F, van de Weygaert R (1996) A new method for accurate estimation of velocity field statistics. Mon Not R Astron Soc 279:693–711

    Google Scholar 

  • Campbell CS (1990) Rapid granular flows. Annu Rev Fluid Mech 22:57–92

    Article  Google Scholar 

  • Capart H (2000) Dam-break induced geomorphic flows and the transition from solid-to fluid-like behaviour across evolving interfaces. PhD thesis, Université catholique de Louvain, Belgium

    Google Scholar 

  • Capart H, Liu HH, Van Crombrugghe X, Young DL (1997) Digital imaging characterization of the kinematics of water-sediment interaction. Water Air Soil Pollut 99:173–177

    Google Scholar 

  • Capart H, Young DL, Zech Y (2002) Voronoï imaging methods for the measurement of granular flows. Exp Fluids 32:121–135

    Article  Google Scholar 

  • Cui MM, Adrian RJ (1997) Refractive index matching and marking methods for highly concentrated solid-liquid flows. Exp Fluids 22: 261–264

    Article  Google Scholar 

  • De Backer A (2001) Développement et application de techniques d’imagerie digitale pour l’analyse tridimensionnelle d’un écoulement complexe. BEng thesis, Haute école Leonardo da Vinci (ECAM), Belgium (in French)

    Google Scholar 

  • Douxchamps D, Devriendt D, Capart H, Craeye C, Macq B, Zech Y (2000) Three-dimensional reconstruction of the oscillatory free-surface of a flow over antidunes: stereoscopic and velocimetric techniques. In: Proceedings of the Oceans 2000 Conference, Rhode Island, USA, September 2000. IEEE, Piscataway, N.J.

    Google Scholar 

  • Drake TG (1991) Granular flow: physical experiments and their implications for microstructural theories. J Fluid Mech 225:121–152

    Article  MathSciNet  Google Scholar 

  • Fairhurst PG, Barigou M, Fryer PJ, Pain JP, Parker DJ (2001) Using positron emission particle tracking (PEPT) to study nearly neutrally buoyant particles in high solid fraction pipe flow. Int J Multiphase Flow 27:1881–1901

    Article  MATH  Google Scholar 

  • Faugeras O (1999) Three-dimensional computer vision: a geometric viewpoint. MIT Press, Cambridge, Mass.

    Google Scholar 

  • Fortes AF, Joseph DD, Lundgren TS (1987) Nonlinear mechanics of fluidization of beds of spherical particles. J Fluid Mech 177:467–483

    Article  Google Scholar 

  • Guler M, Edil TB, Bosscher PJ (1999) Measurement of particle movement in granular soils using image analysis. J Comp Civ Eng 13:116–122

    Article  Google Scholar 

  • Hsiau SS, Jang HW (1998) Measurements of velocity fluctuations of granular materials in a shear cell. Exp Therm Fluid Sci 17:202–209

    Article  Google Scholar 

  • Hryciw RD, Raschke SA, Ghalib AM, Horner DA, Peters JF (1997) Video tracking for experimental validation of discrete elements simulations of large discontinuous deformations. Comput Geotech 21:235–253

    Article  Google Scholar 

  • Jähne B (1995) Digital image processing. Springer-Verlag, Heidelberg Berlin New York

    MATH  Google Scholar 

  • Jain R, Kasturi R, Schunck BG (1995) Machine vision. McGraw-Hill, New York

    Google Scholar 

  • Kang SY, Sangani AS, Tsao HK, Koch DL (1997) Rheology of dense bubble suspensions. Phys Fluids 9:1540–1561

    Article  Google Scholar 

  • Kim W, Kak A (1991) 3D object recognition using bipartite matching embedded in discrete relaxation. IEEE PAMI 13:224–251

    Google Scholar 

  • Lorz U (1990) Cell-area distributions of planar sections of spatial Voronoï mosaics. Mater Characteriz 25:297–309

    Article  Google Scholar 

  • Malik NA, Dracos T, Papantoniou D (1993) Particle tracking velocimetry in three dimensional flows — II: Particle tracking. Exp Fluids 15:279–294

    Article  Google Scholar 

  • Menon N, Durian DJ (1997) Diffusing-wave spectroscopy of dynamics in a three-dimensional granular flow. Science 275:1920–1922

    Article  Google Scholar 

  • Murai Y, Matsumoto Y, Yamamoto F (2001) Three-dimensional measurement of void fraction in a bubble plume using statistic stereoscopic image processing. Exp. Fluids 30:11–21

    Article  Google Scholar 

  • Nakagawa M, Altobelli SA, Caprihan A, Fukushima E, Jeong EK (1993) Noninvasive measurements of granular flows by magnetic-resonance-imaging. Exp Fluids 16:54–60

    Article  Google Scholar 

  • Natarajan VVR, Hunt ML, Taylor ED (1995) Local measurements of velocity fluctuations and diffusion coefficients for a granular material flow. J Fluid Mech 304:1–25

    Article  Google Scholar 

  • Okabe A, Boots B, Sugihara K (1992) Spatial tessellations: concepts and applications of Voronoï diagrams. Wiley, Chichester

    MATH  Google Scholar 

  • Phillips RJ, Armstrong RC, Brown RA (1992) A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys Fluids A 4:30–40

    Article  MATH  Google Scholar 

  • Preparata FP, Shamos MI (1985) Computational geometry: an introduction. Springer-Verlag, Heidelberg Berlin New York

    Google Scholar 

  • Richardson JF, Zaki WN (1954) Sedimentation and fluidization: part I. Trans Instn Chem Engrs 32:35–53

    Google Scholar 

  • Ross SM (1990) A course in simulation. Macmillan, Basingstoke

    MATH  Google Scholar 

  • Rouyer F, Lhuillier D, Martin J, Salin D (2000) Structure, density, and velocity fluctuations in quasi-two-dimensional non-Brownian suspensions of spheres. Phys Fluids 12:958–963

    Article  MATH  MathSciNet  Google Scholar 

  • Savage SB, Dai R (1993) Studies of granular shear flows, wall slip velocities, “layering” and self-diffusion. Mech Mater 16:225–238

    Article  Google Scholar 

  • Seymour JD, Caprihan A, Altobelli SA, Fukushima E (2000) Pulsed gradient spin echo nuclear magnetic resonance imaging of diffusion in granular flow. Phys Rev Lett 84:266–269

    Article  Google Scholar 

  • Song XQ, Yamamoto F, Iguchi M, Murai Y (1999) A new tracking algorithm of PIV and removal of spurious vectors using Delaunay tessellation. Exp Fluids 26:371–380

    Article  Google Scholar 

  • Spinewine B, Capart H, Zech Y (2000) Stereoscopic imaging measurement of solid concentrations in dense granular flows. In: Proceeding of the 10th International Conference on Transport and sedimentation of solid particles, Wroclaw, September 2000. Akademia Rolnicza we Wroclawiu, Wroclaw, Poland, pp 497–509

    Google Scholar 

  • Trucco E, Verri A (1998) Introductory techniques for 3-D computer vision. Prentice Hall, Upper Saddle River, N.J.

    Google Scholar 

  • Tsai RY (1987) A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J Robotics Auto 3:323–344

    Article  Google Scholar 

  • Ushijima S, Tanaka N (1996) Three-dimensional particle tracking velocimetry with laser-light sheet scannings. J Fluid Eng 118:352–357

    Article  Google Scholar 

  • Veber P, Dahl J, Hermansson R (1997) Study of the phenomena affecting the accuracy of a video-based particle tracking velocimetry technique. Exp Fluids 22:482–488

    Article  Google Scholar 

  • Virant M, Dracos T (1997) 3D PTV and its application on Lagrangian motion. Meas Sci Technol 8:1539–1552

    Article  Google Scholar 

  • Wildman RD, Huntley JM, Parker DJ (2001) Granular temperature profiles in three-dimensional vibrofluidized granular beds. Phys Rev E 63:1311–1320

    Article  Google Scholar 

  • Wildman RD, Huntley JM, Hansen JP (1999) Self-diffusion of grains in a two-dimensional vibrofluidized bed. Phys Rev E 60:7066–7075

    Article  Google Scholar 

  • Zhang DZ, Prosperetti A (1994) Averaged equations for inviscid disperse two-phase flow. J Fluid Mech 267:185–219

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Spinewine.

Additional information

Published online: 19 December 2002

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spinewine, B., Capart, H., Larcher, M. et al. Three-dimensional Voronoï imaging methods for the measurement of near-wall particulate flows. Experiments in Fluids 34, 227–241 (2003). https://doi.org/10.1007/s00348-002-0550-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-002-0550-4

Keywords