Skip to main content
Log in

Biomarker in der Therapie venöser retinaler Gefäßverschlüsse

Biomarkers in the treatment of retinal vein occlusion

  • Leitthema
  • Published:
Die Ophthalmologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Retinale Venenverschlüsse, subsumiert in Zentralvenen- und Venenastverschluss, gehören zu den häufigsten vaskulären Erkrankungen der Netzhaut. Sowohl bei Erstdiagnose als auch in der Therapie verschlussassoziierter Komplikationen, v. a. des Makulaödems, sind Biomarker der optischen Kohärenztomographie (OCT), OCT-Angiographie und (Ultraweitwinkel‑)Fluoreszeinangiographie von herausragender Bedeutung.

Methoden

Es erfolgte eine systematische Literaturrecherche auf pubmed.gov mit den Keywords „central retinal vein occlusion“, „branch retinal vein occlusion“, „biomarker“, „OCT“, „OCT angiography“, „ultra-widefield fluorescein angiography“ mit Priorisierung der wichtigsten Aspekte zur Umfangsreduktion.

Ergebnisse

Als relevante Biomarker konnten in der OCT Makuladicke („central retinal thickness“ [CRT]), makuläre Flüssigkeit, die Integrität der Photorezeptorbande (Membrana limitans externa [ELM] und „ellipsoid zone“ [EZ]), „disorganization of retinal inner layers“ (DRIL), hyperreflektive Foci, Aderhautdicke sowie Ischämiezeichen wie „prominent middle limiting membrane“ (p-MLM), die „paracentral acute middle maculopathy“ (PAMM) sowie „hyperreflectivity of inner retinal layers“ (HIRL) identifiziert werden. Der Stellenwert der OCT-Angiographie liegt v. a. in der Beurteilung mikrovaskulärer Veränderungen, insbesondere der „vessel density“ im tiefen retinalen Gefäßplexus, der fovealen avaskulären Zone und von Arealen ohne Kapillarperfusion. Bezüglich der Therapieentscheidung zum Netzhautlaser sind Biomarker der Ultraweitwinkelangiographie wie periphere Ischämien („ischemic index“) sowie Neovaskularisationen essenziell.

Schlussfolgerung

Eine Vielzahl simplerer und komplexer Biomarker ermöglicht heute eine effektive individualisierte Therapie- und Prognoseeinschätzung beim retinalen Venenverschluss. Eine Verschiebung von invasiven zu nichtinvasiven Biomarkern wird beobachtet.

Abstract

Background

Retinal vein occlusion, subdivided into central retinal and branch retinal vein occlusion, is one of the most frequent vascular diseases of the retina. Biomarkers of optical coherence tomography (OCT), OCT-angiography and (ultra-widefield) fluorescein angiography are of exceptional importance in the initial diagnosis and also in the treatment of complications associated with retinal vascular occlusion, particularly macular edema.

Methods

A systematic literature review was carried out in PubMed with the keywords central retinal vein occlusion, branch retinal vein occlusion, biomarker, OCT, OCT angiography, ultra-widefield fluorescein angiography with prioritization of the most important aspects.

Results

Relevant biomarkers in OCT include central retinal thickness (CRT), macular fluid, the integrity of the photoreceptor bands (external limiting membrane and ellipsoid zone), disorganization of retinal inner layers (DRIL), hyperreflective foci, choroidal thickness and signs of ischemia, such as a prominent middle limiting membrane (p-MLM), paracentral acute middle maculopathy (PAMM) as well as hyperreflectivity of inner retinal layers (HIRL). The importance of OCT-angiography lies particularly in the assessment of microvascular alterations, especially vessel density in the deep retinal vascular plexus, the foveal avascular zone and of areas with no capillary perfusion. Biomarkers of ultra-widefield angiography, such as peripheral ischemia (ischemic index) and neovascularízation are essential with respect to treatment decisions for retinal laser.

Conclusion

A multitude of simple and complex biomarkers currently enable an effective individualized evaluation of treatment and prognosis in retinal vein occlusion. A shift from invasive to noninvasive biomarkers can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Rogers S et al (2010) The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Ophthalmology 117:313–319.e1. https://doi.org/10.1016/j.ophtha.2009.07.017

    Article  PubMed  Google Scholar 

  2. Schmidt-Erfurth U et al (2019) Guidelines for the management of retinal vein occlusion by the European society of retina specialists (EURETINA). Ophthalmologica 242:123–162. https://doi.org/10.1159/000502041

    Article  PubMed  CAS  Google Scholar 

  3. Ach T, Hoeh AE, Schaal KB, Scheuerle AF, Dithmar S (2010) Predictive factors for changes in macular edema in intravitreal bevacizumab therapy of retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol 248:155–159. https://doi.org/10.1007/s00417-009-1167-6

    Article  PubMed  CAS  Google Scholar 

  4. Scott IU et al (2009) SCORE study report 1: baseline associations between central retinal thickness and visual acuity in patients with retinal vein occlusion. Ophthalmology 116:504–512. https://doi.org/10.1016/j.ophtha.2008.10.017

    Article  PubMed  Google Scholar 

  5. Michl M et al (2021) The impact of structural optical coherence tomography changes on visual function in retinal vein occlusion. Acta Ophthalmol 99:418–426. https://doi.org/10.1111/aos.14621

    Article  PubMed  Google Scholar 

  6. Casalino G, Williams M, McAvoy C, Bandello F, Chakravarthy U (2016) Optical coherence tomography angiography in paracentral acute middle maculopathy secondary to central retinal vein occlusion. Eye (Lond) 30:888–893. https://doi.org/10.1038/eye.2016.57

    Article  CAS  Google Scholar 

  7. Maltsev DS, Kulikov AN, Burnasheva MA, Chhablani J (2020) Prevalence of resolved paracentral acute middle maculopathy lesions in fellow eyes of patients with unilateral retinal vein occlusion. Acta Ophthalmol 98:e22–e28. https://doi.org/10.1111/aos.14196

    Article  PubMed  Google Scholar 

  8. Bakhoum MF et al (2018) Paracentral acute middle maculopathy and the ischemic cascade associated with retinal vascular occlusion. Am J Ophthalmol 195:143–153. https://doi.org/10.1016/j.ajo.2018.07.031

    Article  PubMed  Google Scholar 

  9. Browning DJ, Punjabi OS, Lee C (2017) Assessment of ischemia in acute central retinal vein occlusion from inner retinal reflectivity on spectral domain optical coherence tomography. Clin Ophthalmol 11:71–79. https://doi.org/10.2147/opth.S122683

    Article  PubMed  Google Scholar 

  10. Kitagawa S et al (2018) Better prognosis for eyes with preserved foveal depression after Intravitreal ranibizumab injection for macular edema secondary to central retinal vein occlusion. Retina 38:1354–1360. https://doi.org/10.1097/iae.0000000000001707

    Article  PubMed  CAS  Google Scholar 

  11. Tang F et al (2020) Optical coherence tomography predictors of short-term visual acuity in eyes with macular edema secondary to retinal vein occlusion treated with intravitreal conbercept. Retina 40:773–785. https://doi.org/10.1097/iae.0000000000002444

    Article  PubMed  CAS  Google Scholar 

  12. Gurudas S et al (2022) Visual outcomes associated with patterns of macular edema resolution in central retinal vein occlusion treated with anti-vascular endothelial growth factor therapy: a post hoc analysis of the Lucentis, Eylea, Avastin in vein occlusion (LEAVO) trial. JAMA Ophthalmol. https://doi.org/10.1001/jamaophthalmol.2021.5619

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yiu G et al (2020) Spectral-domain OCT predictors of visual outcomes after ranibizumab treatment for macular edema resulting from retinal vein occlusion. Ophthalmol Retina 4:67–76. https://doi.org/10.1016/j.oret.2019.08.009

    Article  PubMed  Google Scholar 

  14. Bhisitkul RB, Campochiaro PA, Shapiro H, Rubio RG (2013) Predictive value in retinal vein occlusions of early versus late or incomplete ranibizumab response defined by optical coherence tomography. Ophthalmology 120:1057–1063. https://doi.org/10.1016/j.ophtha.2012.11.011

    Article  PubMed  Google Scholar 

  15. Etheridge T et al (2021) Spectral domain OCT predictors of visual acuity in the study of comparative treatments for retinal vein occlusion 2: SCORE 2 report 15. Ophthalmol Retina 5:991–998. https://doi.org/10.1016/j.oret.2020.12.016

    Article  PubMed  Google Scholar 

  16. Fragiotta S et al (2021) Significance of hyperreflective foci as an optical coherence tomography biomarker in retinal diseases: characterization and clinical implications. J Ophthalmol. https://doi.org/10.1155/2021/6096017

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bolz M et al (2009) Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology 116:914–920. https://doi.org/10.1016/j.ophtha.2008.12.039

    Article  PubMed  Google Scholar 

  18. Kang JW, Lee H, Chung H, Kim HC (2014) Correlation between optical coherence tomographic hyperreflective foci and visual outcomes after intravitreal bevacizumab for macular edema in branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol 252:1413–1421. https://doi.org/10.1007/s00417-014-2595-5

    Article  PubMed  CAS  Google Scholar 

  19. Mo B, Zhou HY, Jiao X, Zhang F (2017) Evaluation of hyperreflective foci as a prognostic factor of visual outcome in retinal vein occlusion. Int J Ophthalmol 10:605–612. https://doi.org/10.18240/ijo.2017.04.17

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chatziralli IP, Sergentanis TN, Sivaprasad S (2016) Hyperreflective foci as an independent visual outcome predictor in macular edema due to retinal vascular diseases treated with intravitreal dexamethasone or ranibizumab. Retina 36:2319–2328. https://doi.org/10.1097/iae.0000000000001070

    Article  PubMed  CAS  Google Scholar 

  21. Hwang HS, Chae JB, Kim JY, Kim DY (2017) Association between hyperreflective dots on spectral-domain optical coherence tomography in macular edema and response to treatment. Invest Ophthalmol Vis Sci 58:5958–5967. https://doi.org/10.1167/iovs.17-22725

    Article  PubMed  CAS  Google Scholar 

  22. Sun JK et al (2014) Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmol 132:1309–1316. https://doi.org/10.1001/jamaophthalmol.2014.2350

    Article  PubMed  Google Scholar 

  23. Babiuch AS et al (2019) Association of disorganization of retinal inner layers with visual acuity response to anti-vascular endothelial growth factor therapy for macular edema secondary to retinal vein occlusion. JAMA Ophthalmol 137:38–46. https://doi.org/10.1001/jamaophthalmol.2018.4484

    Article  PubMed  Google Scholar 

  24. Kanai M et al (2021) Association of disorganization of retinal inner layers with optical coherence tomography angiography features in branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol 259:2897–2903. https://doi.org/10.1007/s00417-021-05168-2

    Article  PubMed  CAS  Google Scholar 

  25. Chu YK, Hong YT, Byeon SH, Kwon OW (2013) In vivo detection of acute ischemic damages in retinal arterial occlusion with optical coherence tomography: a “prominent middle limiting membrane sign”. Retina 33:2110–2117. https://doi.org/10.1097/IAE.0b013e3182899205

    Article  PubMed  Google Scholar 

  26. Furashova O, Matthè E (2020) Hyperreflectivity of inner retinal layers as a quantitative parameter of ischemic damage in acute retinal vein occlusion (RVO): an optical coherence tomography study. Clin Ophthalmol 14:2453–2462. https://doi.org/10.2147/opth.S260000

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mehta N et al (2018) Increased inner retinal layer reflectivity in eyes with acute CRVO correlates with worse visual outcomes at 12 months. Invest Ophthalmol Vis Sci 59:3503–3510. https://doi.org/10.1167/iovs.18-24153

    Article  PubMed  Google Scholar 

  28. Ko J, Kwon OW, Byeon SH (2014) Optical coherence tomography predicts visual outcome in acute central retinal vein occlusion. Retina 34:1132–1141. https://doi.org/10.1097/iae.0000000000000054

    Article  PubMed  Google Scholar 

  29. Tsui I, Sarraf D (2013) Paracentral acute middle maculopathy and acute macular neuroretinopathy. Ophthalmic Surg Lasers Imaging Retina 44:33–35. https://doi.org/10.3928/23258160-20131101-06

    Article  Google Scholar 

  30. Kulikov AN, Maltsev DS, Leongardt TA (2020) Retinal microvasculature alteration in paracentral acute middle maculopathy and acute macular neuroretinopathy: a quantitative optical coherence tomography angiography study. Retin Cases Brief Rep 14:343–351. https://doi.org/10.1097/icb.0000000000000709

    Article  PubMed  Google Scholar 

  31. Nakamura M et al (2019) Longitudinal follow-up of two patients with isolated paracentral acute middle maculopathy. Int Med Case Rep J 12:143–149. https://doi.org/10.2147/imcrj.S196047

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang Z, Jiang Y, Huang X, Wu Z, Ke B (2021) Clinical characteristics of paracentral acute middle maculopathy in eyes with retinal vascular occlusion diseases in Chinese patients. J Ophthalmol. https://doi.org/10.1155/2021/8867570

    Article  PubMed  PubMed Central  Google Scholar 

  33. Alis A, Guler Alis M (2021) The effect of branch retinal vein occlusion on the vascular structure of the choroid. Photodiagnosis Photodyn Ther 37:102687. https://doi.org/10.1016/j.pdpdt.2021.102687

    Article  PubMed  Google Scholar 

  34. Hwang BE, Kim M, Park YH (2021) Role of the choroidal vascularity index in branch retinal vein occlusion (BRVO) with macular edema. PLoS ONE 16:e258728. https://doi.org/10.1371/journal.pone.0258728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Tang F et al (2019) Comparison of subfoveal choroidal thickness in eyes with CRVO and BRVO. BMC Ophthalmol 19:133. https://doi.org/10.1186/s12886-019-1143-9

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rayess N et al (2019) Baseline choroidal thickness as a short-term predictor of visual acuity improvement following antivascular endothelial growth factor therapy in branch retinal vein occlusion. Br J Ophthalmol 103:55–59. https://doi.org/10.1136/bjophthalmol-2018-311898

    Article  PubMed  Google Scholar 

  37. Sakanishi Y, Morita S, Mashimo K, Tamaki K, Ebihara N (2021) Subfoveal choroidal thickness and treatment outcomes of intravitreal aflibercept for branch retinal vein occlusion. Life (Basel). https://doi.org/10.3390/life11060572

    Article  Google Scholar 

  38. Okamoto M, Yamashita M, Sakamoto T, Ogata N (2018) Choroidal blood flow and thickness as predictors for response to anti-vascular endothelial growth factor therapy in macular edema secondary to branch retinal vein occlusion. Retina 38:550–558. https://doi.org/10.1097/iae.0000000000001566

    Article  PubMed  CAS  Google Scholar 

  39. Keidel LF et al (2021) Pachychoroid disease and its association with retinal vein occlusion: a case-control study. Sci Rep 11:19854. https://doi.org/10.1038/s41598-021-99115-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Adhi M et al (2016) Retinal capillary network and foveal avascular zone in eyes with vein occlusion and fellow eyes analyzed with optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:OCT486–OCT494. https://doi.org/10.1167/iovs.15-18907

    Article  PubMed  Google Scholar 

  41. Coscas F et al (2016) Optical coherence tomography angiography in retinal vein occlusion: evaluation of superficial and deep capillary plexa. Am J Ophthalmol 161:160–171.e1–2. https://doi.org/10.1016/j.ajo.2015.10.008

    Article  PubMed  Google Scholar 

  42. Fan L, Zhu Y, Liao R (2021) Evaluation of macular microvasculature and foveal avascular zone in patients with retinal vein occlusion using optical coherence tomography angiography. Int Ophthalmol. https://doi.org/10.1007/s10792-021-02015-5

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gadde SG et al (2016) Quantification of vessel density in retinal optical coherence tomography angiography images using local fractal dimension. Invest Ophthalmol Vis Sci 57:246–252. https://doi.org/10.1167/iovs.15-18287

    Article  PubMed  CAS  Google Scholar 

  44. Kim KM et al (2020) Repeatability of measuring the vessel density in patients with retinal vein occlusion: an optical coherence tomography angiography study. PLoS ONE 15:e234933. https://doi.org/10.1371/journal.pone.0234933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Seknazi D et al (2018) Optical coherence tomography angiography in retinal vein occlusion: correlations between macular vascular density, visual acuity, and peripheral nonperfusion area on fluorescein angiography. Retina 38:1562–1570. https://doi.org/10.1097/iae.0000000000001737

    Article  PubMed  Google Scholar 

  46. Huang J, Lu Y, Gu X, Zheng B, Chen T (2021) Correlation between the nonperfusion area on ultra-widefield fluorescein angiography and nonflow area on optical coherence tomographic angiography in retinal vein occlusion. J Ophthalmol. https://doi.org/10.1155/2021/5581319

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ryu G, Park D, Lim J, van Hemert J, Sagong M (2021) Macular microvascular changes and their correlation with peripheral nonperfusion in branch retinal vein occlusion. Am J Ophthalmol 225:57–68. https://doi.org/10.1016/j.ajo.2020.12.026

    Article  PubMed  Google Scholar 

  48. Yeung L, Wu WC, Chuang LH, Wang NK, Lai CC (2019) Novel optical coherence tomography angiography biomarker in branch retinal vein occlusion macular edema. Retina 39:1906–1916. https://doi.org/10.1097/iae.0000000000002264

    Article  PubMed  Google Scholar 

  49. Shin YI et al (2019) Changes in peripapillary microvasculature and retinal thickness in the fellow eyes of patients with unilateral retinal vein occlusion: an OCTA study. Invest Ophthalmol Vis Sci 60:823–829. https://doi.org/10.1167/iovs.18-26288

    Article  PubMed  Google Scholar 

  50. Wakabayashi T et al (2017) Retinal microvasculature and visual acuity in eyes with branch retinal vein occlusion: imaging analysis by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58:2087–2094. https://doi.org/10.1167/iovs.16-21208

    Article  PubMed  Google Scholar 

  51. Winegarner A et al (2018) Retinal microvasculature and visual acuity after intravitreal aflibercept in eyes with central retinal vein occlusion: an optical coherence tomography angiography study. Retina 38:2067–2072. https://doi.org/10.1097/iae.0000000000001828

    Article  PubMed  Google Scholar 

  52. Casselholmde Salles M, Kvanta A, Amrén U, Epstein D (2016) Optical coherence tomography angiography in central retinal vein occlusion: correlation between the foveal avascular zone and visual acuity. Invest Ophthalmol Vis Sci 57:OCT242–OCT246. https://doi.org/10.1167/iovs.15-18819

    Article  PubMed  Google Scholar 

  53. Balaratnasingam C et al (2016) Visual acuity is correlated with the area of the foveal avascular zone in diabetic retinopathy and retinal vein occlusion. Ophthalmology 123:2352–2367. https://doi.org/10.1016/j.ophtha.2016.07.008

    Article  PubMed  Google Scholar 

  54. Suzuki N et al (2016) Retinal hemodynamics seen on optical coherence tomography angiography before and after treatment of retinal vein occlusion. Invest Ophthalmol Vis Sci 57:5681–5687. https://doi.org/10.1167/iovs-16-20648

    Article  PubMed  Google Scholar 

  55. Zhu Z et al (2021) Microvascular structure changes after Intravitreal ranibizumab injection in retinal vein occlusion patients with and without macular ischemia. Front Med (Lausanne) 8:737537. https://doi.org/10.3389/fmed.2021.737537

    Article  Google Scholar 

  56. Hasegawa T, Murakawa S, Maruko I, Kogure-Katakura A, Iida T (2019) Correlation between reduction in macular vessel density and frequency of intravitreal ranibizumab for macular oedema in eyes with branch retinal vein occlusion. Br J Ophthalmol 103:72–77. https://doi.org/10.1136/bjophthalmol-2017-311499

    Article  PubMed  Google Scholar 

  57. Choi KE, Yun C, Cha J, Kim SW (2019) OCT angiography features associated with macular edema recurrence after intravitreal bevacizumab treatment in branch retinal vein occlusion. Sci Rep 9:14153. https://doi.org/10.1038/s41598-019-50637-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Prasad PS, Oliver SC, Coffee RE, Hubschman JP, Schwartz SD (2010) Ultra wide-field angiographic characteristics of branch retinal and hemicentral retinal vein occlusion. Ophthalmology 117:780–784. https://doi.org/10.1016/j.ophtha.2009.09.019

    Article  PubMed  Google Scholar 

  59. An W, Han J (2021) Research progress of UWFFA and OCTA in retinal vein occlusion: a review. Eur J Ophthalmol 31:2850–2855. https://doi.org/10.1177/11206721211027411

    Article  PubMed  Google Scholar 

  60. Wang X et al (2021) Leakage index on ultra-widefield fluorescence angiography in different regions of retina and its correlation with cystoid macular edema in central retinal vein occlusion eyes. Graefes Arch Clin Exp Ophthalmol 259:2149–2156. https://doi.org/10.1007/s00417-021-05126-y

    Article  PubMed  Google Scholar 

  61. Nicholson L et al (2021) The clinical relevance of ultra-widefield angiography findings in patients with central retinal vein occlusion and macular oedema receiving anti-VEGF therapy. Eye (Lond). https://doi.org/10.1038/s41433-021-01553-7

    Article  Google Scholar 

  62. Tsui I et al (2011) Ischemic index and neovascularization in central retinal vein occlusion. Retina 31:105–110. https://doi.org/10.1097/IAE.0b013e3181e36c6d

    Article  PubMed  Google Scholar 

  63. Thomas AS, Thomas MK, Finn AP, Fekrat S (2019) Use of the ischemic index on widefield fluorescein angiography to characterize a central retinal vein occlusion as ischemic or nonischemic. Retina 39:1033–1038. https://doi.org/10.1097/iae.0000000000002126

    Article  PubMed  Google Scholar 

  64. Campochiaro PA et al (2014) Long-term outcomes in patients with retinal vein occlusion treated with ranibizumab: the RETAIN study. Ophthalmology 121:209–219. https://doi.org/10.1016/j.ophtha.2013.08.038

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Siedlecki FEBO.

Ethics declarations

Interessenkonflikt

J. Siedlecki, L.-O. Hattenbach, N. Feltgen und S.G. Priglinger geben an: Keiner der Autoren hat finanzielle Interessen bezüglich dieser Studie anzumelden. J. Siedlecki hat zuvor Vortragshonorare und Reisekostenerstattungen von Novartis Pharma GmbH, Carl Zeiss Meditec AG, Oculentis OSD Medical GmbH, Allergan GmbH, Apellis Pharmaceuticals und Heidelberg Engineering GmbH erhalten. J. Siedlecki hat zuvor Beratergehälter von Bayer AG, Novartis Pharma GmbH, Allergan GmbH und Apellis Pharmaceuticals erhalten.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siedlecki, J., Hattenbach, LO., Feltgen, N. et al. Biomarker in der Therapie venöser retinaler Gefäßverschlüsse. Ophthalmologie 119, 1111–1120 (2022). https://doi.org/10.1007/s00347-022-01732-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-022-01732-1

Schlüsselwörter

Keywords

Navigation