Skip to main content
Log in

Optische Kohärenztomographie-Angiographie als zukünftiges Diagnostikum in der Sportmedizin?

Optical coherence tomography angiography as a future diagnostic tool in sports medicine?

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Hochintensives Intervalltraining (HIIT) kann die körperliche Leistungsfähigkeit sowohl bei gesunden Menschen als auch bei Patienten mit lebensstilinduzierten Erkrankungen effektiv verbessern. Ziel der Studie war zu prüfen, ob (I) die individuelle Leistungsfähigkeit und (II) eine HIIT-Intervention Auswirkungen auf optische Kohärenztomographie Angiographie(OCTA)-Messungen am Augenhintergrund von jungen gesunden Erwachsenen haben.

Methoden

Es absolvierten 65 gesunde Probanden einen standardisierten stufenförmigen Lauftest, um die individuelle Fitness zu erheben. Bestimmt wurde diese als Geschwindigkeit an der individuellen anaeroben Laktatschwelle und maximalen Laufgeschwindigkeit. Anschließend folgte ein 4‑wöchiges HIIT mit 2 Trainingseinheiten pro Woche. OCTA-Aufnahmen zur Messung der foveal avaskulären Zone (FAZ) sowie der Flussdichten in verschiedenen Segmentierungen an Makula und Sehnerv wurden in körperlicher Ruhe vor und nach HIIT durchgeführt.

Ergebnisse

Es zeigte sich eine inverse Korrelation zwischen individueller Fitness und FAZ-Größe. Weitere Korrelationen zwischen individueller Fitness und anderen gemessenen OCTA-Parametern ergaben sich nicht. Als Antwort auf das HIIT verringerten sich die mittlere FAZ-Größe im tiefen retinalen Plexus und die makuläre Flussdichte im superfiziellen retinalen Plexus um 14,00 ± 13,02 % bzw. um 1,26 ± 3,20 %. Die Flussdichte der peripapillären „nerve head layer“ zeigte einen Anstieg von 1,94 ± 2,39 %. Alle anderen Parameter zeigten keine signifikanten Unterschiede zwischen den Messungen vor und nach HIIT.

Diskussion

Es zeigten sich Unterschiede in OCTA-Messungen der FAZ in Abhängigkeit von der individuellen Leistungsfähigkeit. Durch HIIT lassen sich signifikante Veränderungen in einigen OCTA-Parametern induzieren. Daher scheint die OCTA eine vielversprechende Modalität im Bereich der Sportmedizin zu sein.

Abstract

Background

High-intensity interval training (HIIT) proved to be efficient for increasing health-related fitness in general and in patients with life style-induced chronic diseases. This study aimed to evaluate if (I) individual physical fitness and (II) a HIIT intervention affects optical coherence tomography angiography (OCTA) measurements at the ocular fundus of healthy young adults.

Methods

A total of 65 healthy participants performed a standardized incremental running test to determine their physical fitness. This was defined as speed at the individual anaerobic threshold and maximum running speed followed by a 4-week HIIT with two exercise sessions/week. The OCTA measurements of the foveal avascular zone (FAZ) and flow densities in various segments of the macula and optic nerve head were performed at rest before and after HIIT.

Results

An inverse correlation between individual fitness and FAZ area was detected. No further correlations between individual physical fitness and other OCTA parameters were found. In response to HIIT the mean FAZ area in the deep retinal plexus and macular flow density of the superficial layer decreased by 14.00 ± 13.02% and 1.26 ± 3.20%, respectively. The flow density of the nerve head layer in the peripapillary area showed an increase of 1.94 ± 2.39%. All other parameters showed no differences between measurements before and after HIIT.

Conclusion

Differences were found in the OCTA measurements of the FAZ depending on the individual physical fitness. Performing HIIT can induce significant changes in certain OCTA parameters. Therefore, OCTA imaging appears to be a promising imaging modality in the field of sports medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Gunn RM (1898) On ophthalmoscopic evidence of general arterial disease. Trans Ophthalmol Soc U K 18:356–381

    Google Scholar 

  2. Gunn RM (1892) Opthalmocsopic evidence of (1) arterial changes associated with chronic renal diseases and (2) of increased arterial tension. Trans Ophthalmol Soc U K 12:124–125

    Google Scholar 

  3. Seidelmann SB, Claggett B, Bravo PE et al (2016) Retinal vessel calibers in predicting long-term cardiovascular outcomes: the Atherosclerosis Risk in Communities Study. Circulation 134(18):1328–1338

    Article  PubMed  PubMed Central  Google Scholar 

  4. Haskell WL, Lee IM, Pate RR et al (2007) Physical activity and public health:updated recommendation for adults from the american college of sports medicine and the american heart association. Circulation 116:1081–1093

    Article  Google Scholar 

  5. Tikellis G, Anuradha S, Klein R, Wong TY (2010) Association between physical activity and retinal microvascular signs: the Atherosclerosis Risk in Communities (ARIC) Study. Microcirculation 17(5):381–393

    PubMed  PubMed Central  Google Scholar 

  6. Hanssen H, Nickel T, Drexel V et al (2011) Exercise-induced alterations of retinal vessel diameters and cardiovascular risk reduction in obesity. Atherosclerosis 216(2):433–439

    Article  CAS  PubMed  Google Scholar 

  7. Jia Y, Bailey ST, Hwang TS et al (2015) Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci USA 112:2395–4022

    Article  CAS  Google Scholar 

  8. Costigan SA, Eather N, Plotnikoff RC, Taaffe DR, Lubans DR (2015) High-intensity interval training for improving health-related fitness in adolescents: a systematic review and meta-analysis. Br J Sports Med 49:1253–1261

    Article  CAS  PubMed  Google Scholar 

  9. Weston KS, Wisløff U, Coombes JS (2014) High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med 48:1227–1234

    Article  PubMed  Google Scholar 

  10. Schmitz B, Nelis P, Rolfes F et al (2018) Effects of high-intensity interval training on optic nerve head and macular perfusion using optical coherence Tomography Angiography. Atherosclerosis 274:8–15

    Article  CAS  PubMed  Google Scholar 

  11. Nelis P, Schmitz B, Klose A et al (2019) Optical coherence tomography angiography suggests size of the foveal avascular zone to be associated with physical fitness (in review)

  12. Berthoin S, Gerbeaux M, Turpin E et al (1994) Comparison of two field tests to estimate maximum aerobic speed. J Sports Sci 12:355–362

    Article  CAS  PubMed  Google Scholar 

  13. Léger L, Boucher R (1980) An indirect continuous running multistage field test: the Université de Montréal track test. Can J Appl Sport Sci 5:77–84

    PubMed  Google Scholar 

  14. Schmitz B, Klose A, Schelleckes K, Jekat CM, Krüger M, Brand SM (2017) Yo-Yo IR1 vs incremental continuous running test for prediction of 3000m performance. J Sports Med Phys Fitness 57:1391–1398

    PubMed  Google Scholar 

  15. Lauermann JL, Treder M, Heiduschka P et al (2017) Impact of eye tracking technology on OCT-Angiography imaging quality in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 255:1535–1542

    Article  CAS  PubMed  Google Scholar 

  16. Lauermann JL, Woetzel AK, Treder M et al (2018) Prevalences of segmentation errors and motion artifacts in OCT-angiography differ among retinal diseases. Graefes Arch Clin Exp Ophthalmol 256(10):1807–1816

    Article  CAS  PubMed  Google Scholar 

  17. Tomlinson A, Hasan B, Lujan BJ (2018) Importance of focus in OCT angiography ophthalmology. Retina 2(7):748–749

    PubMed  Google Scholar 

  18. OCT-Angiographie in Deutschland (2017) Präsentation, Nomenklatur und Zukunftswünsche. Klin Monbl Augenheilkd 234:829–850. https://doi.org/10.1055/s-0043-107889 (Ophthalmologe 114:432–438)

    Article  Google Scholar 

  19. Myers J, Nead KT, Chang P et al (2015) Improved reclassification of mortality risk by assessment of physical activity in patients referred for exercise testing. Am J Med 128:396–402

    Article  PubMed  Google Scholar 

  20. Kokkinos PF, Faselis C, Myers J et al (2017) Cardiorespiratory fitness and incidence of major adverse cardiovascular events in US Veterans: a cohort study. Mayo Clin Proc 92:39–48

    Article  PubMed  Google Scholar 

  21. Meier NF, Lee DC, Sui X, Blair SN (2018) Physical activity, cardiorespiratory fitness, and incident glaucoma. Med Sci Sports Exerc 50(11):2253–2258

    Article  PubMed  Google Scholar 

  22. Gomez-Cabrera MC, Domenech E, Vina J (2008) Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med 44(2):126–131

    Article  CAS  PubMed  Google Scholar 

  23. Kumar DM, Agarwal N (2007) Oxidative stress in glaucoma: a burden of evidence. J Glaucoma 16(3):334–343

    Article  PubMed  Google Scholar 

  24. McGuinness MB, Le J, Mitchell P et al (2017) Physical activity and age-related macular degeneration: a systematic literature review and meta-analysis. Am J Ophthalmol 180:29–38

    Article  PubMed  Google Scholar 

  25. Lawson EC, Han MK, Sellers JT et al (2014) Aerobic exercise protects retinal function and structure from light-induced retinal degeneration. J Neurosci 34(7):2406–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schmitz B, Schelleckes K, Nedele J et al (2017) Dose-Response of High-Intensity Training (HIT) on Atheroprotective miRNA-126 Levels. Front Physiol 8:349

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhao F, Anderson C, Karnes S et al (2018) Expression, regulation and function of miR-126 in the mouse choroid vasculature. Exp Eye Res 170:169–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Villain G, Poissonnier L, Noueihed B et al (2017) MiR-126-5p promotes retinal endothelial cell survival through SetD5 regulation in neurons. Development 145:dev156232. https://doi.org/10.1242/dev.156232

    Article  CAS  Google Scholar 

  29. Yang J, Su J, Wang J et al (2017) Hematocrit dependence of flow signal in optical coherence tomography angiography. Biomed Opt Express 8:776–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Holló G (2017) Influence of large intraocular pressure reduction on peripapillary OCT vessel density in ocular hypertensive and glaucoma eyes. J Glaucoma 26:7–10

    Article  Google Scholar 

  31. Karti O, Zengin MO, Kerci SG et al (2018) Acute effect of caffeine on macular microcirculation in healthy subjects: an optical coherence Tomography Angiography study. Retina 2018. https://doi.org/10.1097/IAE.0000000000002058 (Epub ahead of print)

    Article  Google Scholar 

  32. Alnawaiseh M, Lahme L, Treder M et al (2017) The short-term effects of exercise on optic nerve and macular perfusion measured by Optical Coherence Tomography angiography. Retina 37:1642–1646

    Article  PubMed  Google Scholar 

  33. Sampson DM, Gong P, An D et al (2017) Axial length variation impacts on superficial retinal vessel density and foveal avascular zone area measurements using optical coherence Tomography Angiography. Invest Ophthalmol Vis Sci 58(7):3065–3072

    Article  PubMed  Google Scholar 

  34. Linderman R, Salmon AE, Strampe M et al (2017) Assessing the accuracy of foveal avascular zone measurements using optical coherence Tomography Angiography: segmentation and scaling. Transl Vis Sci Technol 6(3):16

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lauermann JL, Eter N, Alten F (2018) Optical coherence tomography angiography offers new insights into choriocapillaris perfusion. Ophthalmologica 239(2–3):74–84

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Alten FEBO.

Ethics declarations

Interessenkonflikt

F. Alten, P. Nelis, B. Schmitz, S.-M. Brand und N. Eter geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alten, F., Nelis, P., Schmitz, B. et al. Optische Kohärenztomographie-Angiographie als zukünftiges Diagnostikum in der Sportmedizin?. Ophthalmologe 116, 722–727 (2019). https://doi.org/10.1007/s00347-019-0897-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-019-0897-z

Schlüsselwörter

Keywords

Navigation