Skip to main content
Log in

Predicting new-baseline glomerular filtration rate (NBGFR) after donor nephrectomy: validation of a split renal function (SRF)-based formula

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Background

Accurate prediction of post-donor nephrectomy (DN) glomerular filtration rate is potentially useful for evaluating and counselling living kidney donors. Currently, there are limited tools to evaluate post-operative new-baseline glomerular filtration rate (NBGFR) in kidney donors. We aim to validate a conceptually simple formula based on split renal function (SRF) previously developed for radical nephrectomy patients.

Methods

Eighty-three consecutive patients who underwent DN from 2010 to 2016 were included. Pre-operative CT imaging and functional data including pre-DN baseline Global GFR (108.2 ± 13.2 mL/min/1.73m2) were included. Observed NBGFR was defined as the latest eGFR 3–12 months post-DN. SRF, defined as volume of the contralateral non-resected kidney normalised by total volume of kidneys, was determined from pre-operative cross-sectional imaging (49.2 ± 2.36%). The equation derived from Rathi et al. is as detailed: Predicted NBGFR = 1.24 × (Global GFR Pre-DN) x (SRF).

Results

The relationship between predicted NBGFR (66.0 ± 8.29 mL/min/1.73m2) and observed NBGFR (74.9 ± 16.4 mL/min/1.73m2) was assessed by evaluating correlation coefficients, bias, precision, accuracy, and concordance. The new SRF-based formula for NBGFR prediction correlated strongly with observed post-operative NBGFR (Pearson’s r = 0.729) demonstrating minimal bias (median difference = 7.190 mL/min/1.73m2) with good accuracy (96.4% within ± 30%, 62.7% within ± 15%) and precision (IQR of bias =  − 0.094 to 16.227).

Conclusion

The SRF-based formula was also able to accurately discriminate all but one patient to an NBGFR of > 45 mL/min/1.73m2. We utilised the newly developed SRF-based formula for predicting NBGFR in a living kidney donor population. Counselling of donor post-operative renal outcomes may then be optimised pre-operatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data generated or analyzed during the study that is relevant is included in the published paper. The datasets generated during and/or analysed during this study is available from the corresponding author upon reasonable request.

References

  1. Sorbellini M, Kattan MW, Snyder ME, Hakimi AA, Sarasohn DM, Russo P (2006) Prognostic nomogram for renal insufficiency after radical or partial nephrectomy. J Urol. 176(2):472–6 (Discussion 6)

    Article  PubMed  Google Scholar 

  2. Kim HL, Shah SK, Tan W, Shikanov SA, Zorn KC, Shalhav AL et al (2009) Estimation and prediction of renal function in patients with renal tumor. J Urol. 181(6):2451–60 (Discussion 60-1)

    Article  PubMed  Google Scholar 

  3. Yokoyama M, Fujii Y, Takeshita H, Kawamura N, Nakayama T, Iimura Y et al (2014) Renal function after radical nephrectomy: development and validation of predictive models in Japanese patients. Int J Urol 21(3):238–242

    Article  PubMed  Google Scholar 

  4. Liss MA, DeConde R, Caovan D, Hofler J, Gabe M, Palazzi KL et al (2016) Parenchymal volumetric assessment as a predictive tool to determine renal function benefit of nephron-sparing surgery compared with radical nephrectomy. J Endourol 30(1):114–121

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bhindi B, Lohse CM, Schulte PJ, Mason RJ, Cheville JC, Boorjian SA et al (2019) Predicting renal function outcomes after partial and radical nephrectomy. Eur Urol 75(5):766–772

    Article  PubMed  Google Scholar 

  6. McIntosh AG, Parker DC, Egleston BL, Uzzo RG, Haseebuddin M, Joshi SS et al (2019) Prediction of significant estimated glomerular filtration rate decline after renal unit removal to aid in the clinical choice between radical and partial nephrectomy in patients with a renal mass and normal renal function. BJU Int 124(6):999–1005

    Article  PubMed  PubMed Central  Google Scholar 

  7. Aguilar Palacios D, Caraballo ER, Tanaka H, Wang Y, Suk-Ouichai C, Ye Y et al (2020) Compensatory changes in parenchymal mass and function after radical nephrectomy. J Urol 204(1):42–49

    Article  PubMed  Google Scholar 

  8. Aguilar Palacios D, Wilson B, Ascha M, Campbell RA, Song S, DeWitt-Foy ME et al (2021) New baseline renal function after radical or partial nephrectomy: a simple and accurate predictive model. J Urol 205(5):1310–1320

    Article  PubMed  Google Scholar 

  9. Rathi N, Yasuda Y, Palacios DA, Attawettayanon W, Li J, Bhindi B et al (2022) Split renal function is fundamentally important for predicting functional recovery after radical nephrectomy. Eur Urol Open Sci 40:112–116

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rathi N, Palacios DA, Abramczyk E, Tanaka H, Ye Y, Li J et al (2022) Predicting GFR after radical nephrectomy: the importance of split renal function. World J Urol 40(4):1011–1018

    Article  PubMed  Google Scholar 

  11. Lee YP, Kim SJ, Lee J, Lee JG, Huh KH, Joo DJ et al (2020) Long-term compensation of renal function after donor nephrectomy. Korean J Transplant 34(2):84–91

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ibrahim HN, Foley R, Tan L, Rogers T, Bailey RF, Guo H et al (2009) Long-term consequences of kidney donation. N Engl J Med 360(5):459–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu J, Suk-Ouichai C, Dong W, Antonio EC, Derweesh IH, Lane BR et al (2018) Analysis of survival for patients with chronic kidney disease primarily related to renal cancer surgery. BJU Int 121(1):93–100

    Article  PubMed  Google Scholar 

  14. Muzaale AD, Massie AB, Wang MC, Montgomery RA, McBride MA, Wainright JL et al (2014) Risk of end-stage renal disease following live kidney donation. JAMA 311(6):579–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gazel E, Bicer S, Olcucuoglu E, Yigman M, Tastemur S, Camtosun A et al (2015) Comparison of renal function after donor and radical nephrectomy. Ren Fail 37(3):377–380

    Article  CAS  PubMed  Google Scholar 

  16. Lee SH, Kim DS, Cho S, Kim SJ, Kang SH, Park J et al (2015) Comparison of postoperative estimated glomerular filtration rate between kidney donors and radical nephrectomy patients, and risk factors for postoperative chronic kidney disease. Int J Urol 22(7):674–678

    Article  PubMed  Google Scholar 

  17. Goh YS, Wu MW, Tai BC, Lee KC, Raman L, Teo BW et al (2013) Comparison of creatinine based and kidney volume based methods of estimating glomerular filtration rates in potential living kidney donors. J Urol 190(5):1820–1826

    Article  CAS  PubMed  Google Scholar 

  18. Ye Y, Tanaka H, Wang Y, Campbell RA, Aguilar Palacios D, DeWitt-Foy ME et al (2020) Split renal function in patients with renal masses: utility of parenchymal volume analysis vs nuclear renal scans. BJU Int 125(5):686–694

    Article  PubMed  Google Scholar 

  19. Levey AS, Stevens LA (2010) Estimating GFR using the CKD Epidemiology Collaboration (CKD-EPI) creatinine equation: more accurate GFR estimates, lower CKD prevalence estimates, and better risk predictions. Am J Kidney Dis 55(4):622–627

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dancey CP, Reidy J (1999) Statistics without maths for psychology. http://ci.nii.ac.jp/ncid/BB17696782

  21. Lam NN, Lloyd A, Lentine KL, Quinn RR, Ravani P, Hemmelgarn BR et al (2020) Changes in kidney function follow living donor nephrectomy. Kidney Int 98(1):176–186

    Article  PubMed  Google Scholar 

  22. Kim H, Kim JK, Ye C, Choi JH, Lee H, Oh JJ et al (2021) Recurrence after radical and partial nephrectomy in high complex renal tumor using propensity score matched analysis. Sci Rep 11(1):2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tan JC, Gordon EJ, Dew MA, LaPointe RD, Steiner RW, Woodle ES et al (2015) Living donor kidney transplantation: facilitating education about live kidney donation-recommendations from a consensus conference. Clin J Am Soc Nephrol 10(9):1670–1677

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mitsui Y, Sadahira T, Araki M, Wada K, Tanimoto R, Ariyoshi Y et al (2018) The assessment of renal cortex and parenchymal volume using automated CT volumetry for predicting renal function after donor nephrectomy. Clin Exp Nephrol 22(2):453–458

    Article  CAS  PubMed  Google Scholar 

  25. Rathi N, Yasuda Y, Attawettayanon W, Palacios DA, Ye Y, Li J et al (2022) Optimizing prediction of new-baseline glomerular filtration rate after radical nephrectomy: are algorithms really necessary? Int Urol Nephrol 54(10):2537–2545

    Article  PubMed  Google Scholar 

  26. Magistroni R, Corsi C, Marti T, Torra R (2018) A Review of the Imaging Techniques for Measuring Kidney and Cyst Volume in Establishing Autosomal Dominant Polycystic Kidney Disease Progression. Am J Nephrol 48(1):67–78

    Article  PubMed  Google Scholar 

  27. Du Z, Chen W, Xia Q, Shi O, Chen Q (2020) Trends and projections of kidney cancer incidence at the global and national levels, 1990–2030: a Bayesian age-period-cohort modeling study. Biomark Res 8:16

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ethics Committee of the Transplantation S (2004) The consensus statement of the Amsterdam Forum on the Care of the Live Kidney Donor. Transplantation. 78(4):491–2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HPNW: project development, data analysis, and manuscript writing. WZS: project development, data collection, and manuscript writing. VG: project development. YSBG: project development and data collection. HYT: project development and data collection. All authors approved and submitted the final version of the manuscript.

Corresponding author

Correspondence to Hoi Pong Nicholas Wong.

Ethics declarations

Conflict of interest

The authors do not declare any conflict of interests.

Ethical approval

DSRB approval was attained for this study at our institution.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, H.P.N., So, W.Z., Gauhar, V. et al. Predicting new-baseline glomerular filtration rate (NBGFR) after donor nephrectomy: validation of a split renal function (SRF)-based formula. World J Urol 42, 50 (2024). https://doi.org/10.1007/s00345-023-04759-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00345-023-04759-4

Keywords

Navigation