Skip to main content
Log in

Shock wave lithotripsy: The new phoenix?

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Introduction

Following its introduction in 1980, shock wave lithotripsy (SWL) rapidly emerged as the first-line treatment for the majority of patients with urolithiasis. Millions of SWL therapies have since been performed worldwide, and nowadays, SWL still remains to be the least invasive therapy modality for urinary stones. During the last three decades, SWL technology has advanced in terms of shock wave generation, focusing, patient coupling and stone localization. The implementation of multifunctional lithotripters has made SWL available to urology departments worldwide. Indications for SWL have evolved as well. Although endoscopic treatment techniques have improved significantly and seem to take the lead in stone therapy in the western countries due to high stone-free rates, SWL continues to be considered as the first-line therapy for the treatment of most intra-renal stones and many ureteral stones.

Methods

This paper reviews the fundamentals of SWL physics to facilitate a better understanding about how a lithotripter works and should be best utilized.

Results

Advances in lithotripsy technology such as shock wave generation and focusing, advances in stone localization (imaging), different energy source concepts and coupling modalities are presented. Furthermore adjuncts to improve the efficacy of SWL including different treatment strategies are reviewed.

Conclusion

If urologists make use of a more comprehensive understanding of the pathophysiology and physics of shock waves, much better results could be achieved in the future. This may lead to a renaissance and encourage SWL as first-line therapy for urolithiasis in times of rapid progress in endoscopic treatment modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chaussy C, Schmiedt E, Jocham D, Brendel W, Forssmann B, Walther V (1982) First clinical experience with extracorporeally induced destruction of kidney stones by shock waves. J Urol 127(3):417–420

    CAS  PubMed  Google Scholar 

  2. Preminger GM, Tiselius HG, Assimos DG, Alken P, Buck C, Gallucci M, Knoll T, Lingeman JE, Nakada SY, Pearle MS, Sarica K, Turk C, Wolf JS Jr (2007) 2007 Guideline for the management of ureteral calculi. J Urol 178(6):2418–2434. doi:10.1016/j.juro.2007.09.107

    Article  PubMed  Google Scholar 

  3. Türk CKT, Petrik A, Sarica K, Straub M, Seitz C (2012) Guidelines on urolithiasis. http://www.uroweb.org/gls/pdf/20_Urolithiasis_LR%20March%2013%202012.pdf

  4. Lingeman JE, Matlaga BR, Evan AP (2007) Surgical management of urinary lithiasis. In: Wein AJ, Kavoussi LR, Novick AC, Partin AW, Peters CA (eds) Campbell’s–Walsh urology, vol 3, 9th edn. Saunders, Philadelphia, pp 1431–1507

    Google Scholar 

  5. Wiesenthal JD, Ghiculete D, DAH RJ, Pace KT (2010) Evaluating the importance of mean stone density and skin-to-stone distance in predicting successful shock wave lithotripsy of renal and ureteric calculi. Urol Res 38(4):307–313. doi:10.1007/s00240-010-0295-0

    Article  PubMed  Google Scholar 

  6. Granz B, Kohler G (1992) What makes a shock wave efficient in lithotripsy? J Stone Dis 4(2):123–128

    CAS  PubMed  Google Scholar 

  7. Smith N, Zhong P (2012) Stone comminution correlates with the average peak pressure incident on a stone during shock wave lithotripsy. J Biomech 45(15):2520–2525. doi:10.1016/j.jbiomech.2012.07.025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Coleman AJ, Saunders JE, Crum LA, Dyson M (1987) Acoustic cavitation generated by an extracorporeal shockwave lithotripter. Ultrasound Med Biol 13(2):69–76

    Article  CAS  PubMed  Google Scholar 

  9. Zhong P, Chuong CJ (1993) Propagation of shock waves in elastic solids caused by cavitation microjet impact. I: theoretical formulation. J Acoust Soc Am 94(1):19–28

    Article  CAS  PubMed  Google Scholar 

  10. Zhu S, Cocks FH, Preminger GM, Zhong P (2002) The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound Med Biol 28(5):661–671

    Article  PubMed  Google Scholar 

  11. Lokhandwalla M, Sturtevant B (2000) Fracture mechanics model of stone comminution in ESWL and implications for tissue damage. Phys Med Biol 45(7):1923–1940

    Article  CAS  PubMed  Google Scholar 

  12. Zhong P (2013) Shock wave lithotripsy. In: Delale CF (ed) Bubble dynamics and shock waves. Springer, Berlin, pp 291–338

    Chapter  Google Scholar 

  13. Willis LR, Evan AP, Connors BA, Fineberg NS, Lingeman JE (1997) Effects of SWL on glomerular filtration rate and renal plasma flow in uninephrectomized minipigs. J Endourol 11(1):27–32

    Article  CAS  PubMed  Google Scholar 

  14. Freund JB, Colonius T, Evan AP (2007) A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy. Ultrasound Med Biol 33(9):1495–1503. doi:10.1016/j.ultrasmedbio.2007.03.001

    Article  PubMed Central  PubMed  Google Scholar 

  15. Zhong P, Zhou Y, Zhu S (2001) Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL. Ultrasound Med Biol 27(1):119–134

    Article  CAS  PubMed  Google Scholar 

  16. Delvecchio F, Auge BK, Munver R, Brown SA, Brizuela R, Zhong P, Preminger GM (2003) Shock wave lithotripsy causes ipsilateral renal injury remote from the focal point: the role of regional vasoconstriction. J Urol 169(4):1526–1529

    Article  CAS  PubMed  Google Scholar 

  17. Munver R, Delvecchio FC, Kuo RL, Brown SA, Zhong P, Preminger GM (2002) In vivo assessment of free radical activity during shock wave lithotripsy using a microdialysis system: the renoprotective action of allopurinol. J Urol 167(1):327–334

    Article  CAS  PubMed  Google Scholar 

  18. Tailly GG (2012) Lithotripsy Systems. In: Smith AD, Preminger GM, Badlani G (eds) Smiths’s textbook of endourology. Wiley, London

    Google Scholar 

  19. Abernathy BB, Morris JS, Wilson WT, Miller GL, Preminger GM (1989) Evaluation of residual stone fragments following lithotripsy: sonography versus KUB. In: Lingeman JE, Newman DM (eds) Shock wave lithotripsy II. Plenum Press, New York, pp 247–254

    Chapter  Google Scholar 

  20. Preminger GM (1989) Sonographic piezoelectric lithotripsy: more bang for your buck. J Endourol 3:321–327

    Article  Google Scholar 

  21. Rassweiler JJ, Knoll T, Kohrmann KU, McAteer JA, Lingeman JE, Cleveland RO, Bailey MR, Chaussy C (2011) Shock wave technology and application: an update. Eur Urol 59(5):784–796. doi:10.1016/j.eururo.2011.02.033

    Article  PubMed Central  PubMed  Google Scholar 

  22. Pishchalnikov YA, Neucks JS, VonDerHaar RJ, Pishchalnikova IV, Williams JC Jr, McAteer JA (2006) Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shock wave energy. J Urol 176(6 Pt 1):2706–2710. doi:10.1016/j.juro.2006.07.149

    Article  PubMed Central  PubMed  Google Scholar 

  23. Jain A, Shah TK (2007) Effect of air bubbles in the coupling medium on efficacy of extracorporeal shock wave lithotripsy. Eur Urol 51(6):1680–1686. doi:10.1016/j.eururo.2006.10.049

    Article  PubMed  Google Scholar 

  24. Zhong P, Preminger GM (1994) Mechanisms of differing stone fragility in extracorporeal shockwave lithotripsy. J Endourol 8(4):263–268

    Article  CAS  PubMed  Google Scholar 

  25. Ferrandino MN, Pierre SA, Simmons WN, Paulson EK, Albala DM, Preminger GM (2010) Dual-energy computed tomography with advanced postimage acquisition data processing: improved determination of urinary stone composition. J Endourol 24(3):347–354. doi:10.1089/end.2009.0193

    Article  PubMed  Google Scholar 

  26. Zilberman DE, Ferrandino MN, Preminger GM, Paulson EK, Lipkin ME, Boll DT (2010) In vivo determination of urinary stone composition using dual energy computerized tomography with advanced post-acquisition processing. J Urol 184(6):2354–2359. doi:10.1016/j.juro.2010.08.011

    Article  CAS  PubMed  Google Scholar 

  27. Wen CC, Nakada SY (2007) Treatment selection and outcomes: renal calculi. Urol Clin N Am 34(3):409–419. doi:10.1016/j.ucl.2007.04.005

    Article  Google Scholar 

  28. Albala DM, Assimos DG, Clayman RV, Denstedt JD, Grasso M, Gutierrez-Aceves J, Kahn RI, Leveillee RJ, Lingeman JE, Macaluso JN Jr, Munch LC, Nakada SY, Newman RC, Pearle MS, Preminger GM, Teichman J, Woods JR (2001) Lower pole I: a prospective randomized trial of extracorporeal shock wave lithotripsy and percutaneous nephrostolithotomy for lower pole nephrolithiasis-initial results. J Urol 166(6):2072–2080

    Article  CAS  PubMed  Google Scholar 

  29. el-Damanhoury H, Scharfe T, Ruth J, Roos S, Hohenfellner R (1991) Extracorporeal shock wave lithotripsy of urinary calculi: experience in treatment of 3,278 patients using the Siemens Lithostar and Lithostar Plus. J Urol 145(3):484–488

    CAS  PubMed  Google Scholar 

  30. Elkoushy MA, Hassan JA, Morehouse DD, Anidjar M, Andonian S (2011) Factors determining stone-free rate in shock wave lithotripsy using standard focus of Storz Modulith SLX-F2 lithotripter. Urology. doi:10.1016/j.urology.2011.03.005

    Google Scholar 

  31. Logarakis NF, Jewett MA, Luymes J, Honey RJ (2000) Variation in clinical outcome following shock wave lithotripsy. J Urol 163(3):721–725

    Article  CAS  PubMed  Google Scholar 

  32. Preminger GM, Assimos DG, Lingeman JE, Nakada SY, Pearle MS, Wolf JS Jr (2005) Chapter 1: AUA guideline on management of staghorn calculi: diagnosis and treatment recommendations. J Urol 173(6):1991–2000

    Article  PubMed  Google Scholar 

  33. Resit-Goren M, Dirim A, Ilteris-Tekin M, Ozkardes H (2011) Time to stone clearance for ureteral stones treated with extracorporeal shock wave lithotripsy. Urology. doi:10.1016/j.urology.2010.10.060

    PubMed  Google Scholar 

  34. Aboumarzouk OM, Kata SG, Keeley FX, Nabi G (2011) Extracorporeal shock wave lithotripsy (ESWL) versus ureteroscopic management for ureteric calculi. Cochrane Database Syst Rev 12:CD006029. doi:10.1002/14651858.CD006029.pub3

    PubMed  Google Scholar 

  35. Neisius A, Wollner J, Thomas C, Roos FC, Brenner W, Hampel C, Preminger GM, Thuroff JW, Gillitzer R (2013) Treatment efficacy and outcomes using a third generation shockwave lithotripter. BJU Int 112(7):972–981. doi:10.1111/bju.12159

    PubMed  Google Scholar 

  36. Schuler TD, Shahani R, Honey RJ, Pace KT (2009) Medical expulsive therapy as an adjunct to improve shockwave lithotripsy outcomes: a systematic review and meta-analysis. J Endourol 23(3):387–393. doi:10.1089/end.2008.0216

    Article  PubMed  Google Scholar 

  37. Marguet CG, Young MD, Maloney M, Ekeruo W, Springhart WP, L’Esperance JO, Tan YH, Albala DM, Zhou Y, Zhong P, Preminger G (2004) Improved stone comminution and simultaneously reduced tissue injury with an upgraded electrohydraulic lithotripter: in vivo studies. In: American Urological Association Annual Meeting, San Francisco, CA, USA, p 1116

  38. De Sio M, Autorino R, Quarto G, Mordente S, Giugliano F, Di Giacomo F, Neri F, Quattrone C, Sorrentino D, De Domenico R, D’Armiento M (2007) A new transportable shock-wave lithotripsy machine for managing urinary stones: a single-centre experience with a dual-focus lithotripter. BJU Int 100(5):1137–1141. doi:10.1111/j.1464-410X.2007.07039.x

    PubMed  Google Scholar 

  39. Sheir KZ, Lee D, Humphrey PA, Morrissey K, Sundaram CP, Clayman RV (2003) Evaluation of synchronous twin pulse technique for shock wave lithotripsy: in vivo tissue effects. Urology 62(5):964–967

    Article  PubMed  Google Scholar 

  40. Sheir KZ, El-Diasty TA, Ismail AM (2005) Evaluation of a synchronous twin-pulse technique for shock wave lithotripsy: the first prospective clinical study. BJU Int 95(3):389–393. doi:10.1111/j.1464-410X.2005.05306.x

    Article  PubMed  Google Scholar 

  41. Weizer AZ, Zhong P, Preminger GM (2007) New concepts in shock wave lithotripsy. Urol Clin N Am 34(3):375–382. doi:10.1016/j.ucl.2007.07.002

    Article  Google Scholar 

  42. Xi X, Zhong P (2000) Improvement of stone fragmentation during shock-wave lithotripsy using a combined EH/PEAA shock-wave generator-in vitro experiments. Ultrasound Med Biol 26(3):457–467

    Article  CAS  PubMed  Google Scholar 

  43. Zhou Y, Cocks FH, Preminger GM, Zhong P (2004) Innovations in shock wave lithotripsy technology: updates in experimental studies. J Urol 172(5 Pt 1):1892–1898

    Article  PubMed  Google Scholar 

  44. Lingeman JE, McAteer JA, Gnessin E, Evan AP (2009) Shock wave lithotripsy: advances in technology and technique. Nat Rev Urol 6(12):660–670. doi:10.1038/nrurol.2009.216

    Article  PubMed Central  PubMed  Google Scholar 

  45. Evan AP, McAteer JA, Connors BA, Pishchalnikov YA, Handa RK, Blomgren P, Willis LR, Williams JC Jr, Lingeman JE, Gao S (2008) Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig. BJU Int 101(3):382–388. doi:10.1111/j.1464-410X.2007.07231.x

    Article  PubMed  Google Scholar 

  46. Mancini JG, Neisius A, Smith N, Sankin G, Astroza GM, Lipkin ME, Simmons WN, Preminger GM, Zhong P (2013) Assessment of a modified acoustic lens for electromagnetic shock wave lithotripters in a swine model. J Urol 190(3):1096–1101. doi:10.1016/j.juro.2013.02.074

    Article  PubMed Central  PubMed  Google Scholar 

  47. Zhong P, Smith N, Simmons NW, Sankin G (2011) A new acoustic lens design for electromagnetic shock wave lithotripters. AIP Conf Proc 1359:42–47. doi:10.1063/1.3607880

    Article  Google Scholar 

  48. Tailly GG (2013) Optical coupling control in extracorporeal shock wave lithotripsy. J Endourol 27(Supplement 1):A130

    Google Scholar 

  49. Bohris C, Bayer T, Lechner C (2003) Hit/Miss monitoring of ESWL by spectral Doppler ultrasound. Ultrasound Med Biol 29(5):705–712

    Article  PubMed  Google Scholar 

  50. Pace KT, Ghiculete D, Harju M, Honey RJ (2005) Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. J Urol 174(2):595–599. doi:10.1097/01.ju.0000165156.90011.95

    Article  PubMed  Google Scholar 

  51. Chacko J, Moore M, Sankey N, Chandhoke PS (2006) Does a slower treatment rate impact the efficacy of extracorporeal shock wave lithotripsy for solitary kidney or ureteral stones? J Urol 175(4):1370–1373; discussion 1373–1374. doi:10.1016/S0022-5347(05)00683-X

  52. Koo V, Beattie I, Young M (2010) Improved cost-effectiveness and efficiency with a slower shockwave delivery rate. BJU Int 105(5):692–696. doi:10.1111/j.1464-410X.2009.08919.x

    Article  PubMed  Google Scholar 

  53. Gillitzer R, Neisius A, Wollner J, Hampel C, Brenner W, Bonilla AA, Thuroff J (2009) Low-frequency extracorporeal shock wave lithotripsy improves renal pelvic stone disintegration in a pig model. BJU Int 103(9):1284–1288. doi:10.1111/j.1464-410X.2008.08273.x

    Article  PubMed  Google Scholar 

  54. Semins MJ, Trock BJ, Matlaga BR (2008) The effect of shock wave rate on the outcome of shock wave lithotripsy: a meta-analysis. J Urol 179(1):194–197; discussion 197. doi:10.1016/j.juro.2007.08.173

  55. Zhou Y, Cocks FH, Preminger GM, Zhong P (2004) The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy. J Urol 172(1):349–354

    Article  PubMed  Google Scholar 

  56. Maloney ME, Marguet CG, Zhou Y, Kang DE, Sung JC, Springhart WP, Madden J, Zhong P, Preminger GM (2006) Progressive increase of lithotripter output produces better in vivo stone comminution. J Endourol 20(9):603–606. doi:10.1089/end.2006.20.603

    Article  PubMed Central  PubMed  Google Scholar 

  57. Lambert EH, Walsh R, Moreno MW, Gupta M (2010) Effect of escalating versus fixed voltage treatment on stone comminution and renal injury during extracorporeal shock wave lithotripsy: a prospective randomized trial. J Urol 183(2):580–584. doi:10.1016/j.juro.2009.10.025

    Article  PubMed  Google Scholar 

  58. Handa RK, Bailey MR, Paun M, Gao S, Connors BA, Willis LR, Evan AP (2009) Pretreatment with low-energy shock waves induces renal vasoconstriction during standard shock wave lithotripsy (SWL): a treatment protocol known to reduce SWL-induced renal injury. BJU Int 103(9):1270–1274. doi:10.1111/j.1464-410X.2008.08277.x

    Article  PubMed Central  PubMed  Google Scholar 

  59. Matlaga BR, McAteer JA, Connors BA, Handa RK, Evan AP, Williams JC, Lingeman JE, Willis LR (2008) Potential for cavitation-mediated tissue damage in shockwave lithotripsy. J Endourol 22(1):121–126. doi:10.1089/end.2007.9852

    Article  PubMed  Google Scholar 

  60. Krambeck AE, Rule AD, Li X, Bergstralh EJ, Gettman MT, Lieske JC (2011) Shock wave lithotripsy is not predictive of hypertension among community stone formers at long-term followup. J Urol 185(1):164–169. doi:10.1016/j.juro.2010.09.033

    Article  PubMed Central  PubMed  Google Scholar 

  61. Kataoka H (1995) Cardiac dysrhythmias related to extracorporeal shock wave lithotripsy using a piezoelectric lithotriptor in patients with kidney stones. J Urol 153(5):1390–1394

    Article  CAS  PubMed  Google Scholar 

  62. Shouman AM, Ghoneim IA, ElShenoufy A, Ziada AM (2009) Safety of ungated shockwave lithotripsy in pediatric patients. J Pediatr Urol 5(2):119–121. doi:10.1016/j.jpurol.2008.10.007

    Article  PubMed  Google Scholar 

  63. Ogiste JS, Nejat RJ, Rashid HH, Greene T, Gupta M (2003) The role of mannitol in alleviating renal injury during extracorporeal shock wave lithotripsy. J Urol 169(3):875–877. doi:10.1097/01.ju.0000050320.56369.01

    Article  PubMed  Google Scholar 

  64. Williams JC Jr, Kim SC, Zarse CA, McAteer JA, Lingeman JE (2004) Progress in the use of helical CT for imaging urinary calculi. J Endourol 18(10):937–941

    Article  PubMed  Google Scholar 

  65. Perks AE, Schuler TD, Lee J, Ghiculete D, Chung DG, DAH RJ, Pace KT (2008) Stone attenuation and skin-to-stone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Urology 72(4):765–769. doi:10.1016/j.urology.2008.05.046

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The manuscript does not contain clinical studies or patient data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Neisius.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neisius, A., Lipkin, M.E., Rassweiler, J.J. et al. Shock wave lithotripsy: The new phoenix?. World J Urol 33, 213–221 (2015). https://doi.org/10.1007/s00345-014-1369-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-014-1369-3

Keywords

Navigation