Skip to main content

Advertisement

Log in

CD133 immunohistochemical expression predicts progression and cancer-related death in renal cell carcinoma

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the prognostic impact of the histological expression of CD133 in renal cell carcinoma (RCC).

Methods

From 1992 to 2009, 142 consecutive patients underwent radical nephrectomy or partial nephrectomy for RCC. All cases were reviewed by a single pathologist and then subjected to analysis of the immunohistochemical expression of CD133 using tissue microarray. Several clinical and pathological variables were also evaluated.

Results

The median postoperative follow-up was 44 months. Of the 142 immunostained RCC specimens, 77 (54%) showed low and 65 (46%) high expression of CD133. Expression of CD133 was associated with clinical stage (P = 0.05), lymph node involvement (P = 0.03), metastatic disease (P = 0.02) and MVI (P = 0.03). Among other variables, clinical stage, necrosis and metastasis were associated with disease-specific survival (DSS) and progression-free survival (PFS) on univariate analysis. The 5-year PFS rates in patients who provided specimens with high and low expression of CD133 were 83 and 66%, respectively (P = 0.01). It was observed that the 5-year DSS for patients who provided specimens with high and low expression of CD133 was 90 and 71%, respectively (P = 0.003). Multivariate survival analysis showed that patients in the CD133 low-expression group had a higher probability of disease progression (HR 3.4, P = 0.02) and a higher probability of death from cancer (HR 2.4, P = 0.01).

Conclusions

Immunohistochemical expression of CD133 had an impact on survival in patients with RCC, which shows that CD133 might be a useful tool for risk stratification. Low expression of this marker remained as an independent predictor of poor DSS and PFS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. American Cancer Society (2010) Cancer facts & figures 2010. American Cancer Society, Atlanta

    Google Scholar 

  2. Gupta K, Miller JD, Li JZ, Russell MW, Charbonneau C (2008) Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat Rev 34:193–205

    Article  PubMed  Google Scholar 

  3. Kanao K, Mizuno R, Kikuchi E et al (2009) Preoperative prognostic nomogram (probability table) for renal cell carcinoma based on TNM classification. J Urol 181:480–485

    Article  PubMed  Google Scholar 

  4. Eichelberg C, Junker K, Ljungberg B, Moch H (2009) Diagnostic and prognostic molecular markers for renal cell carcinoma: a critical appraisal of the current state of research and clinical. Eur Urol 55:851–863

    Article  PubMed  CAS  Google Scholar 

  5. Park CH, Bergsagel DE, McCulloch EA (1971) Mouse myeloma tumor stem cells: a primary cell culture assay. J Natl Cancer Inst 46:411–422

    PubMed  CAS  Google Scholar 

  6. Hombach-Klonisch S, Paranjothy T, Wiechec E et al (2008) Cancer stem cells as targets for cancer therapy: selected cancers as examples. Arch ImmunolTher Exp 56:165–180

    Article  Google Scholar 

  7. Bussolati B, Bruno S, Grange C et al (2005) Isolation of renal progenitor cells from adult human kidney. Am J Pathol 166:545–555

    Article  PubMed  CAS  Google Scholar 

  8. Röper K, Corbeil D, Huttner WB (2000) Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol 2:582–592

    Article  PubMed  Google Scholar 

  9. Corbeil D, Röper K, Fargeas CA, Joester A, Huttner WB (2001) Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic 2:82–91

    Article  PubMed  CAS  Google Scholar 

  10. Weigmann A, Corbeil D, Hellwig A, Huttner WB (1997) Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc NatlAcadSci 94:12425–12430

    Article  CAS  Google Scholar 

  11. D’Alterio C et al (2010) Differential role of CD133 and CXCR4 in renal cell carcinoma. Cell Cycle 9:4491–4492

    Google Scholar 

  12. Budwit-Novotny DA, McCarty KS, Cox EB et al (1986) Immunohistochemical analyses of estrogen receptor in endometrial adenocarcinoma using a monoclonal antibody. Cancer Res 46(10):5419–5425

    PubMed  CAS  Google Scholar 

  13. Frank I, Blute ML, Leibovich BC, Cheville JC, Lohse CM, Zincke H (2005) Independent validation of the 2002 American Joint Committee on cancer primary tumor classification for renal cell carcinoma using a large, single institution cohort. J Urol 173:1889–1892

    Article  PubMed  Google Scholar 

  14. Bedke J, Pritsch M, Buse S et al (2008) Prognostic stratification of localized renal cell carcinoma by tumor size. J Urol 180:62–67

    Article  PubMed  Google Scholar 

  15. Hollingsworth JM, Miller DC, Daignault S, Hollenbeck BK (2006) Rising incidence of small renal masses: a need to reassess treatment effect. J Natl Cancer Inst 98:1331–1334

    Article  PubMed  Google Scholar 

  16. Lane BR, Samplaski MK, Herts BR, Zhou M, Novick AC, Campbell SC (2008) Renal mass biopsy-a renaissance? J Urol 179:20–27

    Article  PubMed  Google Scholar 

  17. Klatte T, Seligson DB, LaRochelle J et al (2009) Molecular signatures of localized clear cell renal cell carcinoma to predict disease-free survival after nephrectomy. Cancer Epidemiol Biomarkers Prev 18:894–900

    Article  PubMed  CAS  Google Scholar 

  18. Mizrak D, Brittan M, Alison MR (2008) CD133: molecule of the moment. J Pathol 214:3–9

    Article  PubMed  CAS  Google Scholar 

  19. Sagrinati C, Netti GS, Mazzinghi B et al (2006) Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J Am Soc Nephrol 17:2443–2456

    Article  PubMed  CAS  Google Scholar 

  20. Bruno S, Bussolati B, Grange C, Collino F, Graziano ME, Ferrando U, Camussi G (2006) CD133+ renal progenitor cells contribute to tumor angiogenesis. Am J Pathol 169(6):2223–2235

    Article  PubMed  CAS  Google Scholar 

  21. Dall’Oglio MF, Antunes AA, Sarkis AS et al (2007) Microvascular tumour invasion in renal cell carcinoma: the most important prognostic factor. BJU Int 100:552–555

    Article  PubMed  Google Scholar 

  22. Dall’Oglio MF, Ribeiro-Filho LA, Antunes AA et al (2007) Microvascular tumor invasion, tumor size and Fuhrman grade: a pathological triad for prognostic evaluation of renal cell carcinoma. J Urol 178:425–428

    Article  PubMed  Google Scholar 

  23. May M, Brookman-Amissah S, Kendel F et al (2009) Validation of a postoperative prognostic model consisting of tumor microvascular invasion, size, and grade to predict disease-free and cancer-specific survival of patients with surgically resected renal cell carcinoma. Int J Urol 16:616–621

    Article  PubMed  Google Scholar 

  24. Kume H, Suzuki M, Fujimura T et al (2010) Distant metastasis of renal cell carcinoma with a diameter of 3 cm or less-which is aggressive cancer? J Urol 184:64–68

    Article  PubMed  Google Scholar 

  25. Jeon Y et al (2010) Promoter hypermethylation and loss of CD133 gene expression in colorectal cancers. World J Gastroenterol 16(25):3153

    Article  PubMed  CAS  Google Scholar 

  26. Shimizu K, Itoh T, Shimizu M, Ku Y, Hori Y (2009) CD133 expression pattern distinguishes intraductal papillary mucinous neoplasms from ductal adenocarcinomas of the pancreas. Pancreas 38(8):e207–e214

    Article  PubMed  CAS  Google Scholar 

  27. Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L, Hoek M, Zeilstra J, Pals ST, Mehmet H, Stassi G, Medema JP (2010) The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res 70(2):719–729

    Article  PubMed  CAS  Google Scholar 

  28. Balch C, Nephew KP, Huang TH, Bapat SA (2007) Epigenetic “bi-valently marked” process of cancer stem cell-driven tumorigenesis. Bioessays 29:842–845

    Google Scholar 

  29. Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, Mohammad HP, Chen W, Daniel VC, Yu W, Berman DM, Jenuwein T, Pruitt K, Sharkis SJ, Watkins DN, Herman JG, Baylin SB (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39:237–242

    Article  PubMed  CAS  Google Scholar 

  30. Mathieu J et al (2011) HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 71:4640–4652

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Henriques da Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Costa, W.H., Rocha, R.M., da Cunha, I.W. et al. CD133 immunohistochemical expression predicts progression and cancer-related death in renal cell carcinoma. World J Urol 30, 553–558 (2012). https://doi.org/10.1007/s00345-011-0769-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-011-0769-x

Keywords

Navigation