Skip to main content

Advertisement

Log in

p53 and retinoblastoma pathways in bladder cancer

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

A majority of the aggressive, invasive bladder carcinomas have alterations in the p53 and retinoblastoma genes and pathways. Examination of the alterations in the molecules in these pathways that regulate the cell cycle and their effects on the prognosis of bladder cancer are areas of active research. While defects in the p53-Mdm2-p14 axis have been implicated in urothelial cancer, perturbations in the cyclin-dependent kinases and their inhibitors have also been extensively studied in this context. Genetic alterations of the retinoblastoma gene and aberrant post-translational modifications of its protein have also been incriminated in invasive bladder cancer. This article reviews the individual prognostic roles of alterations in these molecules in the context of bladder cancer. Additionally, we review findings from recent studies that are attempting to analyze these markers in combination in an effort to construct molecular panels that can serve as more robust outcome predictors. More importantly, alterations in these molecules are now becoming enticing targets for novel therapeutics. We also review some of these agents that can restore the tumor cells’ altered homeostatic mechanisms, thereby having potential in transitional cell carcinoma therapy. Future management of bladder cancer will employ validated marker panels for outcome prediction, and novel genetic and pharmacologic agents that will be able to target molecular alterations in individual tumors based on their respective profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer statistics, 2007. CA Cancer J Clin 57:43–66

    PubMed  Google Scholar 

  2. Mitra AP, Datar RH, Cote RJ (2006) Molecular pathways in invasive bladder cancer: New insights into mechanisms, progression, and target identification. J Clin Oncol 24:5552–5564. doi: 10.1200/JCO.2006.08.2073

    Article  PubMed  CAS  Google Scholar 

  3. Zhang ZT, Pak J, Huang HY, Shapiro E, Sun TT, Pellicer A, Wu XR (2001) Role of Ha-ras activation in superficial papillary pathway of urothelial tumor formation. Oncogene 20:1973–1980

    Article  PubMed  CAS  Google Scholar 

  4. Bakkar AA, Wallerand H, Radvanyi F, Lahaye JB, Pissard S, Lecerf L, Kouyoumdjian JC, Abbou CC, Pairon JC, Jaurand MC, Thiery JP, Chopin DK, de Medina SG (2003) FGFR3 and TP53 gene mutations define two distinct pathways in urothelial cell carcinoma of the bladder. Cancer Res 63:8108–8112

    PubMed  CAS  Google Scholar 

  5. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823

    Article  PubMed  Google Scholar 

  6. Lane DP, Crawford LV (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261–263

    Article  PubMed  CAS  Google Scholar 

  7. Linzer DI, Levine AJ (1979) Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17:43–52. doi: 10.1016/0092-8674(79)90293-9

    Article  PubMed  CAS  Google Scholar 

  8. DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ (1979) Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA 76:2420–2424

    Article  PubMed  CAS  Google Scholar 

  9. Finlay CA, Hinds PW, Levine AJ (1989) The p53 proto-oncogene can act as a suppressor of transformation. Cell 57:1083–1093. doi: 10.1016/0092-8674(89)90045-7

    Article  PubMed  CAS  Google Scholar 

  10. Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, vanTuinen P, Ledbetter DH, Barker DF, Nakamura Y, White R, Vogelstein B (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244:217–221. doi:10.1126/science.2649981

    Article  PubMed  CAS  Google Scholar 

  11. Mitra AP, Lin H, Datar RH, Cote RJ (2006) Molecular biology of bladder cancer: prognostic and clinical implications. Clin Genitourin Cancer 5:67–77

    Article  PubMed  CAS  Google Scholar 

  12. Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD (1992) Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70:923–935. doi: 10.1016/0092-8674(92)90243-6

    Article  PubMed  CAS  Google Scholar 

  13. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825. doi: 10.1016/0092-8674(93)90500-P

    Article  PubMed  CAS  Google Scholar 

  14. Olumi AF, Tsai YC, Nichols PW, Skinner DG, Cain DR, Bender LI, Jones PA (1990) Allelic loss of chromosome 17p distinguishes high grade from low grade transitional cell carcinomas of the bladder. Cancer Res 50:7081–7083

    PubMed  CAS  Google Scholar 

  15. Dalbagni G, Presti JC Jr, Reuter VE, Zhang ZF, Sarkis AS, Fair WR, Cordon-Cardo C (1993) Molecular genetic alterations of chromosome 17 and p53 nuclear overexpression in human bladder cancer. Diagn Mol Pathol 2:4–13

    PubMed  CAS  Google Scholar 

  16. Cote RJ, Chatterjee SJ (1999) Molecular determinants of outcome in bladder cancer. Cancer J Sci Am 5:2–15

    PubMed  CAS  Google Scholar 

  17. Fujimoto K, Yamada Y, Okajima E, Kakizoe T, Sasaki H, Sugimura T, Terada M (1992) Frequent association of p53 gene mutation in invasive bladder cancer. Cancer Res 52:1393–1398

    PubMed  CAS  Google Scholar 

  18. Esrig D, Spruck CH 3rd, Nichols PW, Chaiwun B, Steven K, Groshen S, Chen SC, Skinner DG, Jones PA, Cote RJ (1993) p53 nuclear protein accumulation correlates with mutations in the p53 gene, tumor grade, and stage in bladder cancer. Am J Pathol 143:1389–1397

    PubMed  CAS  Google Scholar 

  19. Spruck CH 3rd, Ohneseit PF, Gonzalez-Zulueta M, Esrig D, Miyao N, Tsai YC, Lerner SP, Schmutte C, Yang AS, Cote R, Dubeau L, Nichols PW, Hermann GG, Steven K, Horn T, Skinner DG, Jones PA (1994) Two molecular pathways to transitional cell carcinoma of the bladder. Cancer Res 54:784–788

    PubMed  CAS  Google Scholar 

  20. Stein JP, Lieskovsky G, Cote R, Groshen S, Feng AC, Boyd S, Skinner E, Bochner B, Thangathurai D, Mikhail M, Raghavan D, Skinner DG (2001) Radical cystectomy in the treatment of invasive bladder cancer: Long-term results in 1,054 patients. J Clin Oncol 19:666–675

    PubMed  CAS  Google Scholar 

  21. Esrig D, Elmajian D, Groshen S, Freeman JA, Stein JP, Chen SC, Nichols PW, Skinner DG, Jones PA, Cote RJ (1994) Accumulation of nuclear p53 and tumor progression in bladder cancer. N Engl J Med 331:1259–1264

    Article  PubMed  CAS  Google Scholar 

  22. Stein JP, Ginsberg DA, Grossfeld GD, Chatterjee SJ, Esrig D, Dickinson MG, Groshen S, Taylor CR, Jones PA, Skinner DG, Cote RJ (1998) Effect of p21WAF1/CIP1 expression on tumor progression in bladder cancer. J Natl Cancer Inst 90:1072–1079

    Article  PubMed  CAS  Google Scholar 

  23. Wu X, Bayle JH, Olson D, Levine AJ (1993) The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7:1126–1132

    Article  PubMed  CAS  Google Scholar 

  24. Simon R, Struckmann K, Schraml P, Wagner U, Forster T, Moch H, Fijan A, Bruderer J, Wilber K, Mihatsch MJ, Gasser T, Sauter G (2002) Amplification pattern of 12q13-q15 genes (MDM2, CDK4, GLI) in urinary bladder cancer. Oncogene 21:2476–2483

    Article  PubMed  CAS  Google Scholar 

  25. Orlow I, LaRue H, Osman I, Lacombe L, Moore L, Rabbani F, Meyer F, Fradet Y, Cordon-Cardo C (1999) Deletions of the INK4A gene in superficial bladder tumors. Association with recurrence. Am J Pathol 155:105–113

    PubMed  CAS  Google Scholar 

  26. Berggren P, Kumar R, Sakano S, Hemminki L, Wada T, Steineck G, Adolfsson J, Larsson P, Norming U, Wijkstrom H, Hemminki K (2003) Detecting homozygous deletions in the CDKN2A(p16 INK4a)/ARF(p14 ARF) gene in urinary bladder cancer using real-time quantitative PCR. Clin Cancer Res 9:235–242

    PubMed  CAS  Google Scholar 

  27. Knudson AG Jr (1978) Retinoblastoma: A prototypic hereditary neoplasm. Semin Oncol 5:57–60

    PubMed  Google Scholar 

  28. Horowitz JM, Yandell DW, Park SH, Canning S, Whyte P, Buchkovich K, Harlow E, Weinberg RA, Dryja TP (1989) Point mutational inactivation of the retinoblastoma antioncogene. Science 243:937–940. doi:10.1126/science.2521957

    Article  PubMed  CAS  Google Scholar 

  29. Horowitz JM, Park SH, Bogenmann E, Cheng JC, Yandell DW, Kaye FJ, Minna JD, Dryja TP, Weinberg RA (1990) Frequent inactivation of the retinoblastoma anti-oncogene is restricted to a subset of human tumor cells. Proc Natl Acad Sci USA 87:2775–2779. doi:10.1073/pnas.87.7.2775

    Article  PubMed  CAS  Google Scholar 

  30. Takahashi R, Hashimoto T, Xu HJ, Hu SX, Matsui T, Miki T, Bigo-Marshall H, Aaronson SA, Benedict WF (1991) The retinoblastoma gene functions as a growth and tumor suppressor in human bladder carcinoma cells. Proc Natl Acad Sci USA 88:5257–5261. doi:10.1073/pnas.88.12.5257

    Article  PubMed  CAS  Google Scholar 

  31. Cairns P, Proctor AJ, Knowles MA (1991) Loss of heterozygosity at the RB locus is frequent and correlates with muscle invasion in bladder carcinoma. Oncogene 6:2305–2309

    PubMed  CAS  Google Scholar 

  32. Cordon-Cardo C, Wartinger D, Petrylak D, Dalbagni G, Fair WR, Fuks Z, Reuter VE (1992) Altered expression of the retinoblastoma gene product: prognostic indicator in bladder cancer. J Natl Cancer Inst 84:1251–1256

    Article  PubMed  CAS  Google Scholar 

  33. Logothetis CJ, Xu HJ, Ro JY, Hu SX, Sahin A, Ordonez N, Benedict WF (1992) Altered expression of retinoblastoma protein and known prognostic variables in locally advanced bladder cancer. J Natl Cancer Inst 84:1256–1261

    Article  PubMed  CAS  Google Scholar 

  34. Miyamoto H, Shuin T, Torigoe S, Iwasaki Y, Kubota Y (1995) Retinoblastoma gene mutations in primary human bladder cancer. Br J Cancer 71:831–835

    PubMed  CAS  Google Scholar 

  35. Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR (1991) The E2F transcription factor is a cellular target for the RB protein. Cell 65:1053–1061. doi:10.1016/0092-8674(91)90557-F

    Article  PubMed  CAS  Google Scholar 

  36. Schafer KA (1998) The cell cycle: A review. Vet Pathol 35:461–478

    Article  PubMed  CAS  Google Scholar 

  37. DeGregori J, Kowalik T, Nevins JR (1995) Cellular targets for activation by the E2F1 transcription factor include DNA synthesis-and G1/S-regulatory genes. Mol Cell Biol 15:4215–4224

    PubMed  CAS  Google Scholar 

  38. Grossman HB, Liebert M, Antelo M, Dinney CP, Hu SX, Palmer JL, Benedict WF (1998) p53 and RB expression predict progression in T1 bladder cancer. Clin Cancer Res 4:829–834

    PubMed  CAS  Google Scholar 

  39. Cote RJ, Dunn MD, Chatterjee SJ, Stein JP, Shi SR, Tran QC, Hu SX, Xu HJ, Groshen S, Taylor CR, Skinner DG, Benedict WF (1998) Elevated and absent pRb expression is associated with bladder cancer progression and has cooperative effects with p53. Cancer Res 58:1090–1094

    PubMed  CAS  Google Scholar 

  40. Chatterjee SJ, George B, Goebell PJ, Alavi-Tafreshi M, Shi SR, Fung YK, Jones PA, Cordon-Cardo C, Datar RH, Cote RJ (2004) Hyperphosphorylation of pRb: A mechanism for RB tumour suppressor pathway inactivation in bladder cancer. J Pathol 203:762–770. doi:10.1002/path.1567

    Article  PubMed  CAS  Google Scholar 

  41. Aaboe M, Marcussen N, Jensen KM, Thykjaer T, Dyrskjot L, Orntoft TF (2005) Gene expression profiling of noninvasive primary urothelial tumours using microarrays. Br J Cancer 93:1182–1190

    Article  PubMed  CAS  Google Scholar 

  42. Reznikoff CA, Sarkar S, Julicher KP, Burger MS, Puthenveettil JA, Jarrard DF, Newton MA (2000) Genetic alterations and biological pathways in human bladder cancer pathogenesis. Urol Oncol 5:191–203. doi:10.1016/S1078-1439(00)00079-X

    Article  PubMed  CAS  Google Scholar 

  43. Takagi Y, Takashi M, Koshikawa T, Sakata T, Ohshima S (2000) Immunohistochemical demonstration of cyclin D1 in bladder cancers as an inverse indicator of invasiveness but not an independent prognostic factor. Int J Urol 7:366–372. doi:10.1046/j.1442-2042.2000.00212.x

    Article  PubMed  CAS  Google Scholar 

  44. Shariat SF, Ashfaq R, Sagalowsky AI, Lotan Y (2006) Correlation of cyclin D1 and E1 expression with bladder cancer presence, invasion, progression, and metastasis. Hum Pathol 37:1568–1576. doi:10.1016/j.humpath.2006.05.017

    Article  PubMed  CAS  Google Scholar 

  45. Tut VM, Braithwaite KL, Angus B, Neal DE, Lunec J, Mellon JK (2001) Cyclin D1 expression in transitional cell carcinoma of the bladder: Correlation with p53, waf1, pRb and Ki67. Br J Cancer 84:270–275. doi:10.1054/bjc.2000.1557

    Article  PubMed  CAS  Google Scholar 

  46. Garcia-Espana A, Salazar E, Sun T-T, Wu X-R, Pellicer A (2005) Differential expression of cell cycle regulators in phenotypic variants of transgenically induced bladder tumors: Implications for tumor behavior. Cancer Res 65:1150–1157

    Article  PubMed  CAS  Google Scholar 

  47. Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massague J (1994) Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78:59–66. doi:10.1016/0092-8674(94)90572-X

    Article  PubMed  CAS  Google Scholar 

  48. Coats S, Flanagan WM, Nourse J, Roberts JM (1996) Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science 272:877–880. doi: 10.1126/science.272.5263.877

    Article  PubMed  CAS  Google Scholar 

  49. Sun D, Ren H, Oertel M, Sellers RS, Zhu L (2007) Loss of p27Kip1 enhances tumor progression in chronic hepatocyte injury-induced liver tumorigenesis with widely ranging effects on Cdk2 or Cdc2 activation. Carcinogenesis (in press)

  50. Osoegawa A, Yoshino I, Tanaka S, Sugio K, Kameyama T, Yamaguchi M, Maehara Y (2004) Regulation of p27 by S-phase kinase-associated protein 2 is associated with aggressiveness in non-small-cell lung cancer. J Clin Oncol 22:4165–4173. doi:10.1200/JCO.2004.01.035

    Article  PubMed  CAS  Google Scholar 

  51. Cote RJ, Shi Y, Groshen S, Feng AC, Cordon-Cardo C, Skinner D, Lieskovosky G (1998) Association of p27Kip1 levels with recurrence and survival in patients with stage C prostate carcinoma. J Natl Cancer Inst 90:916–920

    Article  PubMed  CAS  Google Scholar 

  52. Kamai T, Takagi K, Asami H, Ito Y, Oshima H, Yoshida KI (2001) Decreasing of p27Kip1 and cyclin E protein levels is associated with progression from superficial into invasive bladder cancer. Br J Cancer 84:1242–1251. doi:10.1054/bjc.2000.1736

    Article  PubMed  CAS  Google Scholar 

  53. Sgambato A, Migaldi M, Faraglia B, Garagnani L, Romano G, De Gaetani C, Ferrari P, Capelli G, Trentini GP, Cittadini A (1999) Loss of P27Kip1 expression correlates with tumor grade and with reduced disease-free survival in primary superficial bladder cancers. Cancer Res 59:3245–3250

    PubMed  CAS  Google Scholar 

  54. Franke KH, Miklosi M, Goebell P, Clasen S, Steinhoff C, Anastasiadis AG, Gerharz C, Schulz WA (2000) Cyclin-dependent kinase inhibitor P27Kip1 is expressed preferentially in early stages of urothelial carcinoma. Urology 56:689–695. doi:10.1016/S0090-4295(00)00678-6

    Article  PubMed  CAS  Google Scholar 

  55. Schrier BP, Vriesema JL, Witjes JA, Kiemeney LA, Schalken JA (2006) The predictive value of p53, p27Kip1, and alpha-catenin for progression in superficial bladder carcinoma. Eur Urol 50:76–82. doi:10.1016/j.eururo.2005.12.041

    Article  PubMed  CAS  Google Scholar 

  56. Halling KC, King W, Sokolova IA, Karnes RJ, Meyer RG, Powell EL, Sebo TJ, Cheville JC, Clayton AC, Krajnik KL, Ebert TA, Nelson RE, Burkhardt HM, Ramakumar S, Stewart CS, Pankratz VS, Lieber MM, Blute ML, Zincke H, Seelig SA, Jenkins RB, O’Kane DJ (2002) A comparison of BTA stat, hemoglobin dipstick, telomerase and Vysis UroVysion assays for the detection of urothelial carcinoma in urine. J Urol 167:2001–2006

    Article  PubMed  CAS  Google Scholar 

  57. Chatterjee SJ, Datar R, Youssefzadeh D, George B, Goebell PJ, Stein JP, Young L, Shi SR, Gee C, Groshen S, Skinner DG, Cote RJ (2004) Combined effects of p53, p21, and pRb expression in the progression of bladder transitional cell carcinoma. J Clin Oncol 22:1007–1013

    Article  PubMed  CAS  Google Scholar 

  58. Shariat SF, Tokunaga H, Zhou J, Kim J, Ayala GE, Benedict WF, Lerner SP (2004) p53, p21, pRB, and p16 expression predict clinical outcome in cystectomy with bladder cancer. J Clin Oncol 22:1014–1024

    Article  PubMed  CAS  Google Scholar 

  59. Shariat SF, Zlotta AR, Ashfaq R, Sagalowsky AI, Lotan Y (2007) Cooperative effect of cell-cycle regulators expression on bladder cancer development and biologic aggressiveness. Mod Pathol 20:445–459. doi:10.1038/modpathol.3800757

    Article  PubMed  CAS  Google Scholar 

  60. Lu ML, Wikman F, Orntoft TF, Charytonowicz E, Rabbani F, Zhang Z, Dalbagni G, Pohar KS, Yu G, Cordon-Cardo C (2002) Impact of alterations affecting the p53 pathway in bladder cancer on clinical outcome, assessed by conventional and array-based methods. Clin Cancer Res 8:171–179

    PubMed  CAS  Google Scholar 

  61. Hitchings AW, Kumar M, Jordan S, Nargund V, Martin J, Berney DM (2004) Prediction of progression in pTa and pT1 bladder carcinomas with p53, p16 and pRb. Br J Cancer 91:552–557. doi:10.1038/sj.bjc.6601954

    Article  PubMed  CAS  Google Scholar 

  62. Mitra AP, Lin H, Cote RJ, Datar RH (2005) Biomarker profiling for cancer diagnosis, prognosis and therapeutic management. Natl Med J India 18:304–312

    PubMed  Google Scholar 

  63. Mitra AP, Datar RH, Cote RJ (2005) Molecular staging of bladder cancer. BJU Int 96:7–12. doi:10.1111/j.1464-410X.2005.05557.x

    Article  PubMed  CAS  Google Scholar 

  64. Mitra AP, Almal AA, George B, Fry DW, Lenehan PF, Pagliarulo V, Cote RJ, Datar RH, Worzel WP (2006) The use of genetic programming in the analysis of quantitative gene expression profiles for identification of nodal status in bladder cancer. BMC Cancer 6:159. doi:10.1186/1471-2407-6-159

    Article  PubMed  CAS  Google Scholar 

  65. Cote RJ, Esrig D, Groshen S, Jones PA, Skinner DG (1997) p53 and treatment of bladder cancer. Nature 385:123–125. doi:10.1038/385123b0

    Article  PubMed  CAS  Google Scholar 

  66. Waldman T, Lengauer C, Kinzler KW, Vogelstein B (1996) Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381:713–716. doi:10.1038/381713a0

    Article  PubMed  CAS  Google Scholar 

  67. Cote RJ, Datar RH (2003) Therapeutic approaches to bladder cancer: Identifying targets and mechanisms. Crit Rev Oncol Hematol 46:S67–S83. doi:10.1016/S1040-8428(03)00066-0

    Article  PubMed  Google Scholar 

  68. Werthman PE, Drazan KE, Rosenthal JT, Khalili R, Shaked A (1996) Adenoviral-p53 gene transfer to orthotopic and peritoneal murine bladder cancer. J Urol 155:753–756. doi:10.1016/S0022-5347(01)66515-7

    Article  PubMed  CAS  Google Scholar 

  69. Pagliaro LC (2000) Gene therapy for bladder cancer. World J Urol 18:148–151. doi:10.1007/s003450050188

    Article  PubMed  CAS  Google Scholar 

  70. Kuball J, Wen SF, Leissner J, Atkins D, Meinhardt P, Quijano E, Engler H, Hutchins B, Maneval DC, Grace MJ, Fritz MA, Storkel S, Thuroff JW, Huber C, Schuler M (2002) Successful adenovirus-mediated wild-type p53 gene transfer in patients with bladder cancer by intravesical vector instillation. J Clin Oncol 20:957–965

    Article  PubMed  CAS  Google Scholar 

  71. Pagliaro LC, Keyhani A, Williams D, Woods D, Liu B, Perrotte P, Slaton JW, Merritt JA, Grossman HB, Dinney CP (2003) Repeated intravesical instillations of an adenoviral vector in patients with locally advanced bladder cancer: A phase I study of p53 gene therapy. J Clin Oncol 21:2247–2253

    Article  PubMed  CAS  Google Scholar 

  72. Pagliaro LC, Keyhani A, Liu B, Perrotte P, Wilson D, Dinney CP (2003) Adenoviral p53 gene transfer in human bladder cancer cell lines: Cytotoxicity and synergy with cisplatin. Urol Oncol 21:456–462. doi:10.1016/S1078-1439(03)00032-2

    PubMed  CAS  Google Scholar 

  73. Gomella LG, Mastrangelo MJ, McCue PA, Maguire HC JR, Mulholland SG, Lattime EC (2001) Phase I study of intravesical vaccinia virus as a vector for gene therapy of bladder cancer. J Urol 166:1291–1295. doi:10.1016/S0022-5347(05)65755-2

    Article  PubMed  CAS  Google Scholar 

  74. Fodor I, Timiryasova T, Denes B, Yoshida J, Ruckle H, Lilly M (2005) Vaccinia virus mediated p53 gene therapy for bladder cancer in an orthotopic murine model. J Urol 173:604–609. doi:10.1097/01.ju.0000143196.37008.2c

    Article  PubMed  CAS  Google Scholar 

  75. Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P, Bergman J, Wiman KG, Selivanova G (2002) Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8:282–288. doi:10.1038/nm0302-282

    Article  PubMed  CAS  Google Scholar 

  76. Bykov VJ, Zache N, Stridh H, Westman J, Bergman J, Selivanova G, Wiman KG (2005) PRIMA-1MET synergizes with cisplatin to induce tumor cell apoptosis. Oncogene 24:3484–3491. doi:10.1038/sj.onc.1208419

    Article  PubMed  CAS  Google Scholar 

  77. Xu HJ, Zhou Y, Seigne J, Perng GS, Mixon M, Zhang C, Li J, Benedict WF, Hu SX (1996) Enhanced tumor suppressor gene therapy via replication-deficient adenovirus vectors expressing an N-terminal truncated retinoblastoma protein. Cancer Res 56:2245–2249

    PubMed  CAS  Google Scholar 

  78. Zhang X, Multani AS, Zhou JH, Shay JW, McConkey D, Dong L, Kim CS, Rosser CJ, Pathak S, Benedict WF (2003) Adenoviral-mediated retinoblastoma 94 produces rapid telomere erosion, chromosomal crisis, and caspase-dependent apoptosis in bladder cancer and immortalized human urothelial cells but not in normal urothelial cells. Cancer Res 63:760–765

    PubMed  CAS  Google Scholar 

  79. Schnier JB, Nishi K, Goodrich DW, Bradbury EM (1996) G1 arrest and down-regulation of cyclin E/cyclin-dependent kinase 2 by the protein kinase inhibitor staurosporine are dependent on the retinoblastoma protein in the bladder carcinoma cell line 5637. Proc Natl Acad Sci USA 93:5941–5946. doi:10.1073/pnas.93.12.5941

    Article  PubMed  CAS  Google Scholar 

  80. Senderowicz AM (2003) Novel small molecule cyclin-dependent kinases modulators in human clinical trials. Cancer Biol Ther 2:S84–S95

    PubMed  CAS  Google Scholar 

  81. Senderowicz AM (2003) Small-molecule cyclin-dependent kinase modulators. Oncogene 22:6609–6620. doi:10.1038/sj.onc.120

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Studies described in this review were supported in part by National Institutes of Health Grants CA-70903, CA-14089, CA-86871 and CA-103455, and National Cancer Institute Grant CA-71921.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Cote.

Additional information

A.P. Mitra and M. Birkhahn contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, A.P., Birkhahn, M. & Cote, R.J. p53 and retinoblastoma pathways in bladder cancer. World J Urol 25, 563–571 (2007). https://doi.org/10.1007/s00345-007-0197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-007-0197-0

Keywords

Navigation