Skip to main content
Log in

Silicon Application Alleviates Drought Stress in Wheat Through Transcriptional Regulation of Multiple Antioxidant Defense Pathways

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Silicon (Si) has been shown to increase plant stress tolerance. However, the molecular mechanisms underlying the effects of Si in alleviating drought stress in winter wheat are unknown. The aim of this study was to investigate the effects of Si on photosynthetic pigments, antioxidant contents, and transcription of several genes involved in the antioxidant defense pathway in drought-stressed wheat plants. Si application resulted in higher leaf chlorophyll content, and lower lipid peroxidation levels and H2O2 contents in wheat flag leaves compared with untreated plants. In addition, Si increased the contents of ascorbate (ASC), reduced glutathione (GSH), and the total phenolic and total flavonoid contents in wheat flag leaves. Quantitative real-time PCR was used to analyze gene expression patterns for three antioxidant enzyme genes, four ASC–GSH cycle genes, and five flavonoid biosynthesis pathway genes. Si application increased the expression of these genes in drought-stressed wheat compared with the −Si treatments. Elevated levels of gene expression and low malondialdehyde and H2O2 contents indicate that Si plays a pivotal role in the coordinated transcriptional regulation of multiple antioxidant defenses in response to drought. Our work also suggests that Si may be important in the metabolic or physiological activities for growth and development of winter wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnon DI, Stout PR (1939) The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol 14:371–375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141(2):391–396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caldana C, Scheible WR, Mueller-Roeber B, Ruzicic S (2007) A quantitative RT-PCR platform for high-throughput expression profiling of 2500 rice transcription factors. Plant Methods 3:7

    Article  PubMed Central  PubMed  Google Scholar 

  • Castellarin SD, Matthews MA, Gaspero GD, Gambetta GA (2007) Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 227:101–112

    Article  CAS  PubMed  Google Scholar 

  • Chain F, Cote-Beaulieu C, Belzile F, Menzies JG, Bélanger RR (2009) A comprehensive transcriptomic analysis of the effect of silicon on wheat plants under control and pathogen stress conditions. Mol Plant Microbe Interact 22:1323–1330

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Z, Young TE, Ling J, Chang SC, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA 100(6):3525–3530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dai WM, Zhang KQ, Duan BW, Sun CX, Zhang KL, Cai R, Zhuang JY (2005) Rapid determination of silicon content in rice (Oryza sativa). Chin J Rice Sci 19(5):460–462

    CAS  Google Scholar 

  • Engelbrecht BMJ, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL, Hubbell S (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447(7140):80–82

    Article  CAS  PubMed  Google Scholar 

  • Fleck AT, Nye T, Repenning C, Stahl F, Zahn M, Schenk MK (2011) Silicon enhances suberization and lignification in roots of rice (Oryza sativa). J Exp Bot 62(2):2001–2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foyer C, Rowell J, Walker D (1983) Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta 157(3):239–244

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gong HJ, Zhu XY, Chen KM, Wang SM, Zhang CL (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Gong HJ, Chen KM, Zhao ZG, Chen GC, Zhou WJ (2008) Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Biol Plant 52(3):592–596

    Article  CAS  Google Scholar 

  • Goto M, Ehara H, Karita S, Takabe K, Ogawa N, Yamada Y, Ogawa S, Yahaya MS, Morita O (2003) Protective effect of silicon on phenolic biosynthesis and ultraviolet spectral stress in rice crop. Plant Sci 164:349–356

    Article  CAS  Google Scholar 

  • Griffith O (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106(1):207–212

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Hou YL, Wang SG, Zhu YG (2005) Effect of silicate on the growth and arsenate uptake by rice (Oryza sativa L.) seedlings in solution culture. Plant Soil 272(1–2):173–181

    Article  CAS  Google Scholar 

  • Hernández I, Alegrel L, Munné-Bosch S (2004) Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol 24:1303–1311

    Article  PubMed  Google Scholar 

  • Iturbe-Ormaetxe I, Escuredo PR, Arrese-Igor C, Becana M (1998) Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol 116:173–181

    Article  PubMed Central  CAS  Google Scholar 

  • Li Q, Ma C, Li H, Xiao Y, Liu X (2004) Effects of soil available silicon on growth, development and physiological functions of soybean. Chin J Appl Ecol 15(1):73–76

    CAS  Google Scholar 

  • Li GZ, Peng XQ, Wei LT, Kang GZ (2013) Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene 529(2):321–325

    Article  CAS  PubMed  Google Scholar 

  • Liang YC, Chen Q, Liu Q, Zhang WH, Ding RX (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160(10):1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler H, Wellburn AR (1983) Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem Soc Trans 603:591–593

    Article  Google Scholar 

  • Ma DY, Sun DX, Wang CY, Li YG, Guo TC (2014) Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol Biochem 80:60–66

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK, Srivastava GC (2001) Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. J Agron Crop Sci 186:63–70

    Article  CAS  Google Scholar 

  • Shan C, He F, Xu G, Han R, Liang A (2012) Nitric oxide is involved in the regulation of ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Biol Plant 56(1):187–191

    Article  CAS  Google Scholar 

  • Shen Y, Jin L, Xiao P, Lu Y, Bao JS (2009) Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. J Cereal Sci 49(1):106–111

    Article  CAS  Google Scholar 

  • Shen XF, Zhou YY, Duan LS, Li ZH, Egrinya Eneji A, Li JM (2010) Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J Plant Physiol 167(15):1248–1252

    Article  CAS  PubMed  Google Scholar 

  • Shetty R, FrettéX Jensen B, Shetty NP, Jensen JD, Hans JLJ, Mari-Anne N, Lars CP (2011) Silicon-induced changes in antifungal phenolic acids, flavonoids, and key phenylpropanoid pathway genes during the interaction between miniature roses and the biotrophic pathogen Podosphaera pannosa. Plant Physiol 157:2194–2205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tuna AL, Kaya C, Higgs D, Murillo-Amador B, Aydemir S, Girgin AR (2008) Silicon improves salinity tolerance in wheat plants. Environ Exp Bot 62(1):10–16

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants—protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Yoon HS, Lee H, Lee IA, Kim KY, Jo J (2004) Molecular cloning of the monodehydroascorbate reductase gene from Brassica campestris and analysis of its mRNA level in response to oxidative stress. Biochim Biophys Acta 1658(3):181–186

    Article  CAS  PubMed  Google Scholar 

  • Zhu ZJ, Wei GQ, Li J, Qian QQ, Yu JQ (2004) Silicon alleviates salt stress and increase antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the Special Funds for Agro-scientific Research in the Public Interest (201203031 and 201203033-08) and the Special Funds for Industry System (CARS-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiancai Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, D., Sun, D., Wang, C. et al. Silicon Application Alleviates Drought Stress in Wheat Through Transcriptional Regulation of Multiple Antioxidant Defense Pathways. J Plant Growth Regul 35, 1–10 (2016). https://doi.org/10.1007/s00344-015-9500-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-015-9500-2

Keywords

Navigation