Skip to main content

Advertisement

Log in

Interactive Effects of Elevated CO2, Drought, and Warming on Plants

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Adverse climate change attributed to elevated atmospheric carbon dioxide concentration (CO2) and increased temperature components of global warming has been a central issue affecting economic and social development. Climate change, particularly global warming, imposes a severe impact on the terrestrial ecosystem. Elevated CO2, drought, and high temperature have been extensively documented individually; however, relatively little is known about how plants respond to the interaction of these factors. To summarize current knowledge on the response of plants to global change factors, we focus on the interactive effects of CO2 enrichment, warming, and drought on plant growth, carbon allocation, and photosynthesis. Stimulation due to elevated CO2 might be suppressed under other negative climatic/environmental stresses such as drought, high temperature, and their combination. However, elevated CO2 could alleviate deleterious effects of moderate drought via reducing stomatal conductance, altering leaf surface, and regulating gene expression. High CO2 levels and rising temperatures may result in opposite responses in plant water use efficiency. Stimulation of plant growth due to elevated CO2 for C3 species occurs regardless of water conditions, but only under a water deficit for C4 species. The positive effect of elevated CO2 on C4 species is derived mainly from the improved water status. Plant adaptive or maladaptive responses to multivariate environments are interactive; thus, researchers need to explore the ecological underpinnings involved in such responses to the multiple factors involved in climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: molecular mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A, Nelson R, Long SP (2004) Testing the “source–sink” hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agric Forest Meteorol 122:85–94

    Article  Google Scholar 

  • Albert KR, Ro-Poulsen H, Mikkelsen TN, Michelsen A, van der Linden L, Beier C (2011) Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status. Plant Cell Environ 34:1207–1222

    Article  CAS  PubMed  Google Scholar 

  • Arp WJ, Van Mierlo JEM, Berendse F, Snijders W (1998) Interactions between elevated CO2 concentration, nitrogen and water: effects on growth and water use of six perennial plant species. Plant Cell Environ 21:1–11

    Article  CAS  Google Scholar 

  • Atkin OK, Scheurwater I, Pons TL (2007) Respiration as a percentage of daily photosynthesis in whole plants is homeostatic at moderate, but not high, growth temperatures. New Phytol 174:367–380

    Article  CAS  PubMed  Google Scholar 

  • Atwell BJ, Henery ML, Rogers GS, Seneweera SP, Treadwell M, Conroy JP (2007) Canopy development and hydraulic function in Eucalyptus tereticornis grown in drought in CO2-enriched atmospheres. Funct Plant Biol 34:1137–1149

    Article  Google Scholar 

  • Bai Y, Han X, Wu J, Chen Z, Li L (2004) Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431:181–184

    Article  CAS  PubMed  Google Scholar 

  • Baker JT, Allen LH Jr, Boote KJ, Jones JW (1989) Response of soybean to air temperature and carbon dioxide concentration. Crop Sci 29:98–105

    Article  Google Scholar 

  • Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    PubMed  Google Scholar 

  • Bauweraerts I, Wertin TM, Ameye M, McGuire MA, Teskey RO, Steppe K (2013) The effect of heat waves, elevated [CO2] and low soil water availability on northern red oak (Quercus rubra L.) seedlings. Global Change Biol 19:517–528

    Article  Google Scholar 

  • Beerling DJ, Chaloner WG (1993) The impact of atmospheric CO2 and temperature change on stomatal density: observations from Quercus robur Lammad leaves. Ann Bot 71:231–235

    Article  CAS  Google Scholar 

  • Bertrand A, Prévost D, Bigras FJ, Lalande R, Tremblay GF, Castonguay Y, Bélanger G (2007) Alfalfa response to elevated atmospheric CO2 varies with the symbiotic rhizobial strain. Plant Soil 301:173–187

    Article  CAS  Google Scholar 

  • Bloor JMG, Pichon P, Falcimagne R, Leadley P, Soussana J-F (2010) Effects of warming, summer drought, and CO2 enrichment on aboveground biomass production, flowering phenology, and community structure in an upland grassland ecosystem. Ecosystems 13:888–900

    Article  CAS  Google Scholar 

  • Boeck HJD, Lemmens CMHM, Bossuyt H, Malchair S, Carnol M, Merckx R, Nijs I, Ceulemans R (2006) How do climate warming and plant species richness affect water use in experimental grasslands? Plant Soil 288:249–261

    Article  CAS  Google Scholar 

  • Bunce JA (1990) Short- and long-term inhibition of respiratory carbon dioxide efflux by elevated carbon dioxide. Ann Bot 65:637–642

    CAS  Google Scholar 

  • Campbell C, Atkinson L, Zaragoza-Castells J, Lundmark M, Atkin O, Hurry V (2007) Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytol 176:375–389

    Article  CAS  PubMed  Google Scholar 

  • Carlen C, Kölliker R, Nösberger J (1999) Dry matter allocation and nitrogen productivity explain growth responses to photoperiod and temperature in forage grasses. Oecologia 121:441–446

    Article  Google Scholar 

  • Centritto M, Lee HSJ, Jarvis PG (1999) Interactive effects of elevated [CO2] and drought on cherry (Prunus avium) seedlings I. Growth, whole—plant water use efficiency and water loss. New Phytol 141:129–140

    Article  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB (2006) Diverse responses of phenology to global changes in a grassland ecosystem. Proc Natl Acad Sci USA 103:13740–13744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conley MM, Kimball BA, Brooks TJ, Pinter PJ Jr, Hunsaker DJ, Wall GW, Adam NR, LaMorte RL, Matthias AD, Thompson TL, Leavitt SW, Ottman MJ, Cousins AB, Triggs JM (2001) CO2 enrichment increases water-use efficiency in sorghum. New Phytol 151:407–412

    Article  Google Scholar 

  • Cotrufo F, Ineson P, Scott AY (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biol 4:43–54

    Article  Google Scholar 

  • Delgado E, Mitchell RAC, Parry MAJ, Driscoll SP, Mitchell VJ, Lawlor DW (1994) Interacting effects of CO2 concentration, temperature and nitrogen supply on photosynthesis and composition of winter wheat leaves. Plant Cell Environ 17:1205–1213

    Article  Google Scholar 

  • Dermody O, Weltzin JF, Engel EC, Allen EP, Norby RJ (2007) How do elevated [CO2], warming, and reduced precipitation interact to affect soil moisture and LAI in an old field ecosystem? Plant Soil 301:255–266

    Article  CAS  Google Scholar 

  • Devasirvatham V, Gaur PM, Mallikarjuna N, Tokachichu RN, Trethowan RM, Tan DKY (2012) Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Funct Plant Biol 39:1009–1018

    Article  Google Scholar 

  • Doheny-Adams T, Hunt L, Franks PJ, Beerling DJ, Gray JE (2012) Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philos Trans R Soc B Biol Sci 367:547–555

    Article  CAS  Google Scholar 

  • Drake BG, Gonzalez-Meler MA, Long SP (1997) More efficient plants: a consequence of elevated carbon dioxide? Annu Rev Plant Physiol Plant Mol Biol 48:607–640

    Article  Google Scholar 

  • Dreesen FE, De Boeck HJ, Janssens IA, Nijs I (2012) Summer heat and drought extremes trigger unexpected changes in productivity of a temperate annual/biannual plant community. Environ Exp Bot 79:21–30

    Article  Google Scholar 

  • Duursma RA, Barton CVM, Eamus D, Medlyn BE, Ellsworth DS, Forster MA, Tissue DT, Linder S, McMurtrie RE (2011) Rooting depth explains [CO2] × drought interaction in Eucalyptus saligna. Tree Physiol 31:922–931

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer JR, Cerling TE, Helliker BR (1997) C4 photosynthesis, atmospheric CO2 and climate. Oecologia 112:285–299

    Article  Google Scholar 

  • Ellsworth DS, Thomas R, Crous KY, Palmroth S, Ward E, Maier C, DeLucia E (2012) Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: a synthesis from Duke FACE. Global Change Biol 18:223–242

    Article  Google Scholar 

  • Erice G, Irigoyen JJ, Pérez P, Martínez-Carrasco R, Sánchez-Díaz M (2006) Effect of elevated CO2, temperature and drought on photosynthesis of nodulated alfalfa during a cutting regrowth cycle. Physiol Plant 126:458–468

    Article  CAS  Google Scholar 

  • Erice G, Irigoyen JJ, Sanchez-Diaz M, Avice JC, Ourry A (2007) Effect of drought, elevated CO2 and temperature on accumulation of N and vegetative storage proteins (VSP) in taproot of nodulated alfalfa before and after cutting. Plant Sci 172:903–912

    Article  CAS  Google Scholar 

  • Ewert F, Rodriguez D, Jamieson P, Semenov MA, Mitchell RAC, Goudriaan J, Porter JR, Kimball BA, Pinter PJ Jr, Manderscheid R, Weigel HJ, Fangmeier A, Fereres E, Villalobos F (2002) Effects of elevated CO2 and drought on wheat: testing crop simulation models for different experimental and climatic conditions. Agric Ecosyst Environ 93:249–266

    Article  Google Scholar 

  • Fleisher DH, Timlin DJ, Reddy VR (2008) Elevated carbon dioxide and water stress effects on potato canopy gas exchange, water use, and productivity. Agric Forest Meteorol 148:1109–1122

    Article  Google Scholar 

  • Ge ZM, Zhou X, Kellomäki S, Peltola H, Martikainen PJ, Wang KY (2012) Acclimation of photosynthesis in a boreal grass (Phalaris arundinacea L.) under different temperature, CO2, and soil water regimes. Photosynthetica 50:141–151

    Article  CAS  Google Scholar 

  • Gorissen A, Cotrufo MF (2000) Decomposition of leaf and root tissue of three perennial grass species grown at two levels of atmospheric CO2 and N supply. Plant Soil 224:75–84

    Article  CAS  Google Scholar 

  • Gray JE, Holroyd GH, Lee FMVD, Bahrani AR, Sljmons PC, Woodward SFL, Schuch W, Hetherington AM (2000) The HIC signalling pathway links CO2 perception to stomatal development. Nature 408:713–716

    Article  CAS  PubMed  Google Scholar 

  • Guehl JM, Picon C, Aussenac G, Gross P (1994) Interactive effects of elevated CO2 and soil drought on growth and transpiration efficiency and its determinants in two European forest tree species. Tree Physiol 14:707–724

    Article  PubMed  Google Scholar 

  • Güitman MR, Arnozis PA, Barneix AJ (1991) Effect of source-sink relations and nitrogen nutrition on senescence and N remobilization in the flag leaf of wheat. Physiol Plant 82:278–284

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461

    Article  Google Scholar 

  • Hameed A, Goher M, Nayyer Iqbal (2012) Heat stress-induced cell death, changes in antioxidants, lipid peroxidation, and protease activity in wheat leaves. J Plant Growth Regul 31:283–291

    Article  CAS  Google Scholar 

  • Hamerlynck EP, Huxman TE, Loik ME, Smith SD (2000) Effects of extreme high temperature, drought and elevated CO2 on photosynthesis of Mojave Desert evergreen shrub, Larrea dridentata. Plant Ecol 148:183–193

    Article  Google Scholar 

  • Hamilton EW III, Heckathorn SA, Joshi P, Wang D, Barua D (2008) Interactive effects of elevated CO2 and growth temperature on the tolerance of photosynthesis to acute heat stress in C3 and C4 species. J Integr Plant Biol 50:1375–1387

    Article  CAS  PubMed  Google Scholar 

  • Han M, Ji C, Zuo W, He J (2006) Interactive effects of elevated CO2 and temperature on the anatomical characteristics of leaves in eleven species. Acta Ecol Sin 26:326–333

    CAS  Google Scholar 

  • Havaux M (1992) Stress tolerance of photosystem II in vivo: antagonistic effects of water, heat and photoinhibition stress. Plant Physiol 100:424–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He JS, Wolfe BKS, Bazzaz FA (2005) Leaf level physiology, biomass, and reproduction of Phytolacca americana under conditions of elevated CO2 and altered temperature regimes. Int J Plant Sci 166:615–622

    Article  Google Scholar 

  • Hill PW, Marshall C, Williams GG, Blum H, Harmens H, Jones DL, Farrar JF (2007) The fate of photosynthetically-fixed carbon in Lolium perenne grassland as modified by elevated CO2 and sward management. New Phytol 173:766–777

    Article  CAS  PubMed  Google Scholar 

  • Housman D, Zitzer SF, Huxman TE, Smith SD (2003) Functional ecology of shrub seedlings after a natural recruitment event at the Nevada Desert FACE Facility. Global Change Biol 9:718–728

    Article  Google Scholar 

  • Housman DC, Naumburg E, Huxman TE, Charlet TN, Nowak RS, Smith SD (2006) Increases in desert shrub productivity under elevated carbon dioxide vary with water availability. Ecosystems 9:374–385

    Article  Google Scholar 

  • Hovenden MJ, Wills KE, Schoor JKV, Chaplin RE, Williams AL, Nolan MJ, Newton PCD (2007) Flowering, seed production and seed mass in a species-rich temperate grassland exposed to FACE and warming. Aust J Bot 55:780–794

    Article  Google Scholar 

  • Hui D, Luo YQ, Cheng WX, Coleman S, Johnson DW, Sims DA (2001) Canopy radiation- and water-use efficiencies as affected by elevated [CO2]. Global Change Biol 7:75–91

    Article  Google Scholar 

  • Hussain MZ, Vanloocke A, Siebers MH, Ruiz-Vera UM, Markelz RJC, Leakey ADB, Ort DR, Bernacchi CJ (2013) Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize. Global Change Biol. doi:10.1111/gcb.12155

    Google Scholar 

  • Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, van Oijen M, Wallin G (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480

    Article  PubMed  CAS  Google Scholar 

  • Ikegami M, Whigham DF, Werger MJA (2007) Responses of rhizome length and ramet production to resource availability in the clonal sedge Scirpus olneyi A Gray. Plant Ecol 189:247–259

    Article  Google Scholar 

  • IPCC (2007) Technical summary. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • IPCC (2012) Summary for policymakers. In: Field CB, Barros V, Stocker TF et al. (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, and New York, pp 1-19

  • Jackson RB, Sala OE, Field CB, Mooney HA (1994) CO2 alters water use, carbon gain, and yield for the dominant species in a natural grassland. Oecologia 98:257–262

    Article  Google Scholar 

  • Jackson RB, Cook CW, Pippen JS, Palmer SM (2009) Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest. Ecology 90:3352–3366

    Article  PubMed  Google Scholar 

  • Johnson SL, Lincoln D (2000) Allocation response to CO2 enrichment and defoliation by a native annual plant Heterotheca subaxillaris. Global Change Biol 6:767–778

    Article  Google Scholar 

  • Kallarackal J, Roby TJ (2012) Responses of trees to elevated carbon dioxide and climate change. Biodivers Conserv 21:1327–1342

    Article  Google Scholar 

  • Kellomäki S, Wang KY (1997) Effects of long-term CO2 and temperature elevation on crown nitrogen distribution and daily photosynthetic performance of Scots pine. Forest Ecol Manag 99:309–326

    Article  Google Scholar 

  • Kim SH, Sicher RC, Bae H, Gitz DC, Baker JT, Timlin DJ, Reddy VR (2006) Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment. Global Change Biol 12:588–600

    Article  Google Scholar 

  • Komatsu M, Tobita H, Watanabe M, Yazaki K, Koike T, Kitao M (2013) Photosynthetic downregulation in leaves of the Japanese white birch grown under elevated CO2 concentration does not change their temperature-dependent susceptibility to photoinhibition. Physiol Plant 147:159–168

    Article  CAS  PubMed  Google Scholar 

  • Koti S, Reddy KR, Kakani VG, Zhao D, Reddy VR (2005) Interactive effects of carbon dioxide, temperature and ultraviolet-B radiation on flower and pollen morphology, quantity and quality of pollen in soybean (Glycine max L.) genotypes. J Exp Bot 56:725–736

    Article  CAS  PubMed  Google Scholar 

  • Koti S, Reddy KR, Kakani VG, Zhao D, Gao W (2007) Effects of carbon dioxide, temperature and ultraviolet-B radiation and their interactions on soybean (Glycine max L.) growth and development. Environ Exp Bot 60:1–10

    Article  CAS  Google Scholar 

  • Lambrecht SC, Loik ME, Inouye DW, Harte J (2007) Reproductive and physiological responses to simulated climate warming for four subalpine species. New Phytol 173:121–134

    Article  CAS  PubMed  Google Scholar 

  • Leakey ADB, Uribelarrea M, Ainsworth EA, Naidu SL, Rogers A, Ort DR, Long SP (2006) Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol 140:779–790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leakey ADB, Bishop KA, Ainsworth EA (2012) A multi-biome gap in understanding of crop and ecosystem responses to elevated CO2. Curr Opin Plant Biol 15:228–236

    Article  CAS  PubMed  Google Scholar 

  • Lee JS (2011) Combined effect of elevated CO2 and temperature on the growth and phenology of two annual C3 and C4 weedy species. Agric Ecosyst Environ 140:484–491

    Article  Google Scholar 

  • Leuzinger S, Körner C (2007) Water savings in mature deciduous forest trees under elevated CO2. Global Change Biol 13:2498–2508

    Article  Google Scholar 

  • Lilley JM, Bolger TP, Gifford RM (2001a) Productivity of Trifolium subterraneum and Phalaris aquatica under warmer, high CO2 conditions. New Phytol 150:371–383

    Article  Google Scholar 

  • Lilley JM, Bolger TP, Peoples MB, Gifford RM (2001b) Nutritive value and the nitrogen dynamics of Trifolium subterraneum and Phalaris aquatica under warmer, high CO2 conditions. New Phytol 150:385–395

    Article  CAS  Google Scholar 

  • Liu L, Wang E, Zhu Y, Tang L, Cao W (2013) Effects of warming and autonomous breeding on the phenological development and grain yield of double-rice systems in China. Agric Ecosyst Environ 165:28–38

    Article  Google Scholar 

  • Loiseau P, Soussana JF (1999) Elevated [CO2], temperature increase and N supply effects on the turnover of below-ground carbon in a temperate grassland ecosystem. Plant Soil 210:233–247

    Article  CAS  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants face the future. Annu Rev Plant Biol 55:591–628

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yield? Plant Cell Environ 29:315–330

    Article  CAS  PubMed  Google Scholar 

  • Lucash MS, Farnsworth B, Winner WE (2005) Response of sagebrush steppe species to elevated CO2 and soil temperature. West N Am Nat 65:80–86

    Google Scholar 

  • Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig A, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739

    Article  Google Scholar 

  • Luo Y, Hui D, Zhang D (2006) Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87:53–63

    Article  PubMed  Google Scholar 

  • Madan P, Jagadish SVK, Craufurd PQ, Fitzgerald M, Lafarge T, Wheeler TR (2012) Effect of elevated CO2 and high temperature on seed-set and grain quality of rice. J Exp Bot 63:3843–3852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maestre FT, Quero JL, Valladares F, Reynolds JF (2007) Individual vs. population plastic responses to elevated CO2, nutrient availability, and heterogeneity: a microcosm experiment with co-occurring species. Plant Soil 296:53–64

    Article  CAS  Google Scholar 

  • Maestre FT, Salguero-Gomez R, Quero JL (2012) It is getting hotter in here: determining and projecting the impacts of global environmental change on drylands Introduction. Philos Trans R Soc B Biol Sci 367:3062–3075

    Article  Google Scholar 

  • Mahouachi J, Arbona V, Gomez-Cadenas A (2007) Hormonal changes in papaya seedlings subjected to progressive water stress and re-watering. Plant Growth Regul 53:43–51

    Article  CAS  Google Scholar 

  • Markelz RJ, Strellner RS, Leakey AD (2011) Impairment of C-4 photosynthesis by drought is exacerbated by limiting nitrogen and ameliorated by elevated [CO2] in maize. J Exp Bot 62:3235–3246

    Article  CAS  PubMed  Google Scholar 

  • Matzek V (2011) Superior performance and nutrient-use efficiency of invasive plants over non-invasive congeners in a resource-limited environment. Biol Invasions 13:3005–3014

    Article  Google Scholar 

  • McCarthy HR, Oren R, Finzi AC, Ellsworth DS, Kim HS, Johnsen KH, Millar B (2007) Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2. Global Change Biol 13:2479–2497

    Article  Google Scholar 

  • McCarthy HR, Oren R, Johnsen KH, Gallet-Budynek A, Pritchard SG, Cook CW, LaDeau SL, Jackson RB, Finzi AC (2010) Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: interactions of atmospheric [CO2] with nitrogen and water availability over stand development. New Phytol 185:514–528

    Article  CAS  PubMed  Google Scholar 

  • Milcu A, Lukac M, Subke JA et al (2012) Biotic carbon feedbacks in a materially closed soil–vegetation–atmosphere system. Nat Clim Change 2:281–284

    Article  CAS  Google Scholar 

  • Mishra RS, Abdin MZ, Uprety DC (1999) Interactive effects of elevated CO2 and moisture stress on the photosynthesis, water relation and growth of Brassica species. J Agron Crop Sci 182:223–229

    Article  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Mohammed AR, Tarpley L (2009) High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agric Forest Meteorol 149:999–1008

    Article  Google Scholar 

  • Morgan JA, LeCain DR, Mosier AR, Milchunas DG (2001) Elevated CO2 enhances water relations and productivity and affects gas exchange in C3 and C4 grasses of the Colorado shortgrass steppe. Global Change Biol 7:451–466

    Article  Google Scholar 

  • Morgan JA, Milchunas DG, LeCain DR, West M, Mosier AR (2007) Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the shortgrass steppe. Proc Natl Acad Sci USA 104:14724–14729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morgan JA, LeCain DR, Pendall E et al (2011) C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476:202–205

    Article  CAS  PubMed  Google Scholar 

  • Morison JIL, Lawlor DW (1999) Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environ 22:659–682

    Article  CAS  Google Scholar 

  • Naumburg E, Loik ME, Smith SD (2004) Photosynthetic responses of Larrea tridentata to seasonal temperature extremes under elevated CO2. New Phytol 162:323–330

    Article  Google Scholar 

  • Nelson JA, Morgan JA, LeCain DR, Mosier A, Milchunas DG, Parton BA (2004) Elevated CO2 increases soil moisture and enhances plant water relations in a long-term field study in semi-arid shortgrass steppe of Colorado. Plant Soil 259:169–179

    Article  CAS  Google Scholar 

  • Norby RJ, Luo YQ (2004) Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multifactor world. New Phytol 162:281–293

    Article  Google Scholar 

  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci USA 107:19368–19373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2—do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162:253–280

    Article  Google Scholar 

  • Oliveira ED, Bramley H, Siddique KHM, Henty S, Berger J, Palta JA (2013) Can elevated CO2 combined with high temperature ameliorate the effect of terminal drought in wheat? Funct Plant Biol 40:160–171

    Article  CAS  Google Scholar 

  • Owensby CE, Ham JM, Knapp A, Rice CW, Coyne PI, Auen LM (1996) Ecosystem-level responses of tallgrass prairie to elevated CO2. In: Körner C, Bazzaz FA (eds) Carbon dioxide and terrestrial ecosystems. Academic Press, San Diego, pp 147–162

    Chapter  Google Scholar 

  • Pardos M, Puertolas J, Aranda I, Pardos JA (2006) Can CO2 enrichment modify the effect of water and high light stress on biomass allocation and relative growth rate of cork oak seedlings? Trees Struct Funct 20:713–724

    Article  Google Scholar 

  • Parton WJ, Morgan JA, Wang GM, Grosso SD (2007) Projected ecosystem impact of the prairie heating and CO2 enrichment experiment. New Phytol 174:823–834

    Article  CAS  PubMed  Google Scholar 

  • Perry LG, Shafroth PB, Blumenthal DM, Morgan JA, LeCain DR (2013) Elevated CO2 does not offset greater water stress predicted under climate change for native and exotic riparian plants. New Phytol 197:532–543

    Article  CAS  PubMed  Google Scholar 

  • Plaut Z, Butow BJ, Blumenthal CS, Wrigley CW (2004) Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Res 86:185–198

    Article  Google Scholar 

  • Polley HW, Johnson HB, Fay PA, Sanabria J (2008) Initial response of evapotranspiration from tallgrass prairie vegetation to CO2 at subambient to elevated concentrations. Funct Ecol 22:163–171

    Google Scholar 

  • Poorter H, Pérez-Soba M (2001) The growth response of plants to elevated CO2 under non-optimal environmental conditions. Oecologia 129:1–20

    Article  Google Scholar 

  • Rawson HM (1992) Plant responses to temperature under conditions of elevated CO2. Aust J Bot 40:473–490

    Article  CAS  Google Scholar 

  • Reddy KR, Hodges HF, McKinion JM (1995) Carbon dioxide and temperature effects on pima cotton development. Agron J 87:820–826

    Article  Google Scholar 

  • Reekie EG, Bazzaz FA (1991) Phenology and growth in four annual species grown in ambient and elevated CO2. Can J Bot 69:2475–2481

    Article  Google Scholar 

  • Reichstein M, Tenhunen J, Roupsard O, Ourcival J-M, Rambal S, Miglietta F, Peressotti A, Pecchiari M, Tirone G, Valentini R (2002) Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypothesis. Global Change Biol 8:999–1017

    Article  Google Scholar 

  • Rizhsky L, Liang HJ, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide: the response of arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sardans J, Peñuuelas J, Estiarte M, Patricia P (2008) Warming and drought alter C and N concentration, allocation and accumulation in a Mediterranean shrubland. Global Change Biol 14:2304–2316

    Article  Google Scholar 

  • Shah NH, Paulsen GM (2003) Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil 257:219–226

    Article  CAS  Google Scholar 

  • Sherry RA, Zhou X, Gu S, Arnone JA III, Johnson DW, Schimel DS, Verburg PSJ, Wallace LL, Luo Y (2011) Changes in duration of reproductive phases and lagged phenological response to experimental climate warming. Plant Ecol Divers 4:23–35

    Article  Google Scholar 

  • Sinclair TR, Pinter PJ, Kimball BA, Adamsen FJ, LaMorte RL, Wall GW, Hunsaker DJ, Adam N, Brook TJ, Garcia RL, Thompson T, Leavitt S, Mattias A (2000) Leaf nitrogen concentration of wheat subjected to elevated [CO2] and either water or N deficits. Agric Ecosyst Environ 79:53–60

    Article  CAS  Google Scholar 

  • Sivakumar MVK (2007) Interactions between climate and desertification. Agric Forest Meteorol 142:143–155

    Article  Google Scholar 

  • Smith NG, Dukes JS (2013) Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Global Change Biol 19:45–63

    Article  Google Scholar 

  • Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR, Nowak RS (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408:79–82

    Article  CAS  PubMed  Google Scholar 

  • Stirling CM, Davey PA, Williams TG, Long SP (1997) Acclimation of photosynthesis to elevated CO2 and temperature in five British native species of contrasting functional type. Global Change Biol 3:237–246

    Article  Google Scholar 

  • Suzuki N, Rizhsky L, Liang H, Shuman J, Shulaev V, Mittler R (2005) Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c. Plant Physiol 139:1313–1322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tang Y, Wen X, Lu Q, Yang Z, Cheng Z, Lu C (2007) Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiol 143:629–638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor G, Street NR, Tricker PJ, Sjödin A, Graham L, Skogström O, Calfapietra C, Scarascia-Mugnozza G, Jansson S (2005) The transcriptome of Populus in elevated CO2. New Phytol 167:143–154

    Article  CAS  PubMed  Google Scholar 

  • Temperton V, Lard PM, Jarvis P (2003) Does elevated atmospheric carbon dioxide affect internal nitrogen allocation in the temperate trees Alnus glutinosa and Pinus sylvestris? Global Change Biol 9:286–294

    Article  Google Scholar 

  • Teng N, Wang J, Chen T, Wu X, Wang Y, Lin J (2006) Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol 172:92–103

    Article  CAS  PubMed  Google Scholar 

  • Terry AC, Quick WP, Beerling DJ (2000) Long-term growth of ginkgo with CO2 enrichment increases leaf ice nucleation temperatures and limits recovery of the photosynthetic system from freezing. Plant Physiol 124:183–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thiagarajan A, Lada RR (2007) Intrinsic changes in photosynthetic parameters of carrot leaves under increasing CO2 concentrations and soil moisture regimes. Photosynthetica 45:43–50

    Article  CAS  Google Scholar 

  • Thiagarajan A, Lada R, Joy P (2007) Compensatory effects of elevated CO2 concentration on the inhibitory effects of high temperature and irradiance on photosynthetic gas exchange in carrots. Photosynthetica 45:355–362

    Article  CAS  Google Scholar 

  • Thilakarathne CL, Tausz-Posch S, Cane K, Norton RM, Tausz M, Seneweera S (2013) Intraspecific variation in growth and yield response to elevated CO2 in wheat depends on the differences of leaf mass per unit area. Funct Plant Biol 40:185–194

    Article  Google Scholar 

  • Tingey DT, McKane RB, Olszyk DM, Johnson MG, Rygiewicz PT, Lee EH (2003) Elevated CO2 and temperature alter nitrogen allocation in Douglas-fir. Global Change Biol 9:1038–1050

    Article  Google Scholar 

  • Tingey DT, Phillips DL, Lee EH, Waschmann RS, Olszyk DM, Rygiewicz PT, Johnson MG (2007) Elevated temperature, soil moisture and seasonality but not CO2 affect canopy assimilation and system respiration in seedling Douglas-fir ecosystems. Agric Forest Meteorol 143:30–48

    Article  Google Scholar 

  • Tjoelker MG, Zhou X (2007) The many faces of climate warming. New Phytol 176:739–742

    Article  PubMed  Google Scholar 

  • Tjoelker MG, Oleksyn J, Lee TD, Reich PB (2001) Direct inhibition of leaf dark respiration by elevated CO2 is minor in 12 grassland species. New Phytol 150:419–424

    Article  CAS  Google Scholar 

  • Tobita H, Uemura A, Kitao M, Kitaoka S, Maruyama Y, Utsugi H (2011) Effects of elevated atmospheric carbon dioxide, soil nutrients and water conditions on photosynthetic and growth responses of Alnus hirsute. Funct Plant Biol 38:702–710

    Article  CAS  Google Scholar 

  • Urban L, Barthélémy L, Bearez P, Pyrrha P (2001) Effect of elevated CO2 on photosynthesis and chlorophyll fluorescence of rose plants grown at high temperature and high photosynthetic photon flux. Photosynthetica 39:275–281

    Article  Google Scholar 

  • Valladares F, Gianoli E, Gómez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytol 176:749–763

    Article  PubMed  Google Scholar 

  • van Groenigen KJ, Gorissen A, Six J, Harris D, Kuikman PJ, van Groenigen JW, van Kessel C (2005) Decomposition of 14C-labeled roots in a pasture soil exposed to 10 years of elevated CO2. Soil Biol Biochem 37:497–506

    Article  CAS  Google Scholar 

  • Van Peer L, Nijs I, Reheul D, Cauwer BD (2004) Species richness and susceptibility to heat and drought extremes in synthesized grassland ecosystems: compositional vs physiological effects. Funct Ecol 18:769–778

    Article  Google Scholar 

  • Volder A, Gifford RM, Evans J (2007) Effects of elevated atmospheric CO2, cutting frequency, and differential day/night atmospheric warming on root growth and turnover of Phalaris swards. Global Change Biol 13:1–13

    Article  Google Scholar 

  • Volder A, Briske DD, Tjoelker MG (2013) Climate warming and precipitation redistribution modify tree-grass interactions and tree species establishment in a warm-temperate savanna. Global Change Biol 19:843–857

    Article  Google Scholar 

  • Vu JCV, Allen LH Jr (2009) Growth at elevated CO2 delays the adverse effects of drought stress on leaf photosynthesis of the C4 sugarcane. J Plant Physiol 166:107–116

    Article  CAS  PubMed  Google Scholar 

  • Wall GW, Garcia RL, Kimball BA, Hunsaker DJ, Pinter PJ, Long SP, Osborne CP, Hendrix DL, Wechsung F, Wechsung G, Leavitt SW, LaMorte RL, Idso SB (2006) Interactive effects of elevated carbon dioxide and drought on wheat. Agron J 98:354–381

    Article  Google Scholar 

  • Wall GW, Garcia RL, Wechsung F, Kimball BA (2011) Elevated atmospheric CO2 and drought effects on leaf gas exchange properties of barley. Agric Ecosyst Environ 144:390–404

    Article  CAS  Google Scholar 

  • Wan S, Norby RJ, Ledford J, Weltzin J (2007) Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Global Change Biol 13:2411–2424

    Article  Google Scholar 

  • Warren CR, Adams MA (2006) Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis. Plant Cell Environ 29:192–201

    Article  CAS  PubMed  Google Scholar 

  • Warren JM, Norby RJ, Wullschleger SD (2011) Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol 31:117–130

    Article  PubMed  Google Scholar 

  • Wayne PM, Reekie EG, Bazzaz FA (1998) Elevated CO2 ameliorates birch response to high temperature and frost stress: implications for modeling climate-induced geographic range shifts. Oecologia 114:1432–1939

    Article  Google Scholar 

  • Webber AN, Nie G-Y, Long SP (1994) Acclimation of photosynthetic proteins to rising atmospheric CO2. Photosynth Res 39:413–425

    Article  CAS  PubMed  Google Scholar 

  • West NE, Yorks TP (2006) Long-term interactions of climate, productivity, species richness, and growth form in relictual sagebrush steppe plant communities. West N Am Nat 66:502–526

    Article  Google Scholar 

  • Williams AL, Wills KE, Janes JK, Schoor JKV, Newton PCD, Hovenden MJ (2007) Warming and free-air CO2 enrichment alter demographics in four co-occurring grassland species. New Phytol 176:365–374

    Article  PubMed  Google Scholar 

  • Wullschleger SD, Tschaplinski TJ, Norby RJ (2002) Plant water relations at elevated CO2—implications for water-limited environments. Plant Cell Environ 25:319–331

    Article  PubMed  Google Scholar 

  • Xu ZZ, Zhou GS (2005a) Effects of water stress and nocturnal temperature on carbon allocation in the perennial grass, Leymus chinensis. Physiol Plant 123:272–280

    Article  CAS  Google Scholar 

  • Xu ZZ, Zhou GS (2005b) Effects of water stress and high nocturnal temperature on photosynthesis and nitrogen level of a perennial grass Leymus chinensis. Plant Soil 269:131–139

    Article  CAS  Google Scholar 

  • Xu ZZ, Zhou GS (2006) Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta 224:1080–1090

    Article  CAS  PubMed  Google Scholar 

  • Xu ZZ, Zhou GS (2008) Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J Exp Bot 59:3317–3325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu ZZ, Yu ZW, Dong QY, Qi XH, Yu SL (1997) Effects of water stress on cell membrane and the ultrastructure of flag leaf cell in winter wheat. Acta Agron Sin 23:370–375

    Google Scholar 

  • Xu ZZ, Zhou GS, Wang YH (2005) Responses of grassland and ecosystem to CO2 enrichment and climate change. J Appl Meteorol Sci 16:385–395

    Google Scholar 

  • Xu CG, Gertner GZ, Robert MS (2007a) Potential effects of interaction between CO2 and temperature on forest landscape response to global warming. Global Change Biol 13:1469–1483

    Article  Google Scholar 

  • Xu ZZ, Zhou GS, Wang YH (2007b) Combined effects of elevated CO2 and soil drought on carbon and nitrogen allocation of the desert shrub Caragana intermedia. Plant Soil 301:87–97

    Article  CAS  Google Scholar 

  • Xu ZZ, Zhou GS, Shimizu H (2009) Effects of soil drought with nocturnal warming on leaf stomatal traits and mesophyll cell ultrastructure of a perennial grass. Crop Sci 49:1843–1851

    Article  Google Scholar 

  • Yin XW (2002) Responses of leaf nitrogen concentration and specific leaf area to atmospheric CO2 enrichment: a retrospective synthesis across 62 species. Global Change Biol 8:631–642

    Article  Google Scholar 

  • Yu J, Chen L, Xu M, Huang B (2012) Effects of elevated CO2 on physiological responses of tall fescue to elevated temperature, drought stress, and the combined stresses. Crop Sci 52:1848–1858

    Article  CAS  Google Scholar 

  • Yuan ZY, Li LH, Han XG, Chen SP, Wang ZW, Chen QS, Bai WM (2006) Nitrogen response efficiency increased monotonically with decreasing soil resource availability: a case study from a semiarid grassland in northern China. Oecologia 148:564–572

    Article  PubMed  Google Scholar 

  • Zeppel MJB, Lewis JD, Chaszar B, Smith RA, Medlyn BE, Huxman TE, Tissue DT (2012) Nocturnal stomatal conductance responses to rising [CO2], temperature and drought. New Phytol 193:929–938

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Kondo M, Maeda M, Ozaki Y, Zhang J (2004) Water-use efficiency and carbon isotope discrimination in two cultivars of upland rice during different developmental stages under three water regimes. Plant Soil 261:61–75

    Article  CAS  Google Scholar 

  • Zhao H, Li Y, Zhang X, Korpelainen H, Li C (2012) Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO2 and elevated temperature. Tree Physiol 32:1325–1338

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Ziska L, Zhu J, Zeng Q, Xie Z, Tang H, Jia X, Hasegawa T (2012) The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (Oryza sativa) and wheat (Triticum aestivum) under elevated carbon dioxide. Physiol Plant 145:395–405

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (31170456), the National Key Basic Research Specific Foundation (2010CB951301), the State Key Laboratory of Vegetation and Environmental Change (2011zyts09), and the Japan Society for the Promotion of Science (P07622). We greatly appreciate the researchers’ help and the reviewers’ constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenzhu Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Shimizu, H., Yagasaki, Y. et al. Interactive Effects of Elevated CO2, Drought, and Warming on Plants. J Plant Growth Regul 32, 692–707 (2013). https://doi.org/10.1007/s00344-013-9337-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-013-9337-5

Keywords

Profiles

  1. Zhenzhu Xu