Skip to main content
Log in

Domestication of marine microalga Nannochloropsis oceanica to freshwater medium and the physiological responses

  • Biology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Marine microalga Nannochl oropsis oceanica LAMB0001 were domesticated (~730 generations, ~two days each) to adapt freshwater BG11 medium. A number of freshwater medium adapted colonyderived strains were obtained. The strains were verified phylogenetically to be N. oceanica LAMB0001 based on the 18S ribosomal RNA gene. Freshwater-medium adapted strain (FA1) grew faster in the BG11 medium prepared with freshwater than wild-type N. oceanica grew in f/2 medium prepared with seawater. We assumed that (1) the expression patterns of the genes that expressed differentially between FA1 and the wild-type N. oceanica exposing to the BG11 medium (WT-F) have been reprogrammed; (2) the physiological processes in which these genes involved have been modified; and (3) a Gene Ontology (GO) term or a KEGG pathway enriched by DEGs between FA1 and WT-F has been up- or down-regulated if it was enriched simultaneously by up- or down-regulated DEGs between FA1 and WT-F, respectively. Under these assumptions, we found that FA1 reprogrammed the expression patterns of a set of genes that involved in cell adhesion, membrane and membrane integrity, material transportation, cell movement, and cellular signaling network. These changes in cellular functions and metabolic pathways indicate that the microalga modified its gene expression pattern in a wide function range and at a high regulation rank in order to adapt to the freshwater medium. It is feasible to domesticate marine microalgae to a freshwater habitat, which may aid to modify their cultivation performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alverson A J. 2007. Strong purifying selection in the silicon transporters of marine and freshwater diatoms. Limnology and Oceanography, 52 (4): 1 420–1 429.

    Article  Google Scholar 

  • Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biology, 11: R106.

    Google Scholar 

  • Benjamini Y, Yekutieli D. 2001. The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics, 29 (4): 1 165–1 188.

    Article  Google Scholar 

  • Chen K, Li E C, Li T Y, Xu C, Wang X D, Lin H Z, Qin J G, Chen L Q. 2015. Transcriptome and molecular pathway analysis of the hepatopancreas in the Pacific white shrimp Litopenaeus vannamei under chronic low–salinity stress. PLoS One, 10 (7): e0131503.

    Article  Google Scholar 

  • Crevillén P, Yang H C, Cui X, Greeff C, Trick M, Qiu Q, Cao X F, Dean C. 2014. Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state. Nature, 515 (7528): 587–590.

    Article  Google Scholar 

  • Fawley K P, Fawley M W. 2007. Observations on the diversity and ecology of freshwater Nannochloropsis (Eustigmatophyceae), with descriptions of new taxa. Protist, 158 (3): 325–336.

    Article  Google Scholar 

  • Galloway R E. 1990. Selective conditions and isolation of mutants in salt–tolerant, lipid–producing microalgae. Journal of Phycology, 26 (4): 752–260.

    Article  Google Scholar 

  • Gee C W, Niyogi K K. 2017. The carbonic anhydrase CAH1 is an essential component of the carbon–concentrating mechanism in Nannochloropsis oceanica. Proceedings of the National Academy of Sciences of the United States of America, 114 (17): 4 537–4 542.

    Article  Google Scholar 

  • Guillard R R L, Ryther J H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervace a (Cleve) gran. Canadian Journal of Microbiology, 8 (2): 229–239.

    Article  Google Scholar 

  • Guillard R R L. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Smith W L, Chanley M H eds. Culture of Marine Invertebrate Animals. Plenum Press, New York. p.29–60.

  • Huang W C, Hu H H. 2013. Study on the salinity tolerance and oil accumulation in Nannochloropsis. Acta Hydrobiologica Sinica, 37 (2): 383–387. (in Chinese)

    Google Scholar 

  • Ji H T, Pardo J M, Batelli G, Van Oosten M J, Bressan R A, Li X. 2013. The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Mol ecular Plant, 6 (2): 275–286.

    Article  Google Scholar 

  • Kilian O, Benemann C S E, Niyogi K K, Vick B. 2011. Highefficiency homologous recombination in the oil–producing alga Nannochloropsis sp. Proceedings of the National Academy of Sciences of the United States of America, 108 (52): 21 265–21 269.

    Article  Google Scholar 

  • Kim D, Langmead B, Salzberg S L. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12 (4): 357–360.

    Article  Google Scholar 

  • Kouzarides T. 2007. Chromatin modifications and their function. Cell, 128 (4): 693–705.

    Article  Google Scholar 

  • Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23 (21): 2 947–2 948.

    Article  Google Scholar 

  • Liang C W, Cao S N, Zhang X W, Zhu B H, Su Z L, Xu D, Guang X Y, Ye N H. 2013. De novo sequencing and global transcriptome analysis of Nannochloropsis sp. (Eustigmatophyceae) following nitrogen starvation. BioEnergy Research, 6 (2): 494–505.

    Article  Google Scholar 

  • Liu S K, Wang X L, Sun F Y, Zhang J R, Feng J B, Liu H, Rajendran K V, Sun L Y, Zhang Y, Jiang Y L, Peatman E, Kaltenboeck L, Kucuktas H, Liu Z J. 2013. RNA–Seq reveals expression signatures of genes involved in oxygen transport, protein synthesis, folding, and degradation in response to heat stress in catfish. Physiological Genomics, 45 (12): 462–476.

    Article  Google Scholar 

  • Lohbeck K T, Riebesell U, Reusch T B H. 2014. Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification. Proceedings of the Royal Society B: Biological Sciences, 281 (1786): 20140003.

    Article  Google Scholar 

  • Mao X Z, Cai T, Olyarchuk J G, Wei L P. 2005. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics, 21 (19): 3 787–3 793.

    Article  Google Scholar 

  • Marschner H. 1995. Mineral Nutrition of Higher Plants. Academic Preßs, London.

    Google Scholar 

  • Mastrobuoni G, Irgang S, Pietzke M, Aßmus H E, Wenzel M, Schulze W X, Kempa S. 2012. Proteome dynamics and early salt stress response of the photosynthetic organism Chlamydomonas reinhardtii. BMC Genomics, 13: 215.

    Google Scholar 

  • Pan K H, Qin J J, Li S, Dai W K, Zhu B H, Jin Y C, Yu W G, Yang G P, Li D F. 2011. Nuclear monoploidy and asexual propagation of Nannochloropsis oceanica (Eustigmatophyceae) as revealed by its genome sequence. Journal of Phycology, 47 (6): 1 425–1 432.

    Article  Google Scholar 

  • Pedersen S F, Hoffmann E K, Mills J W: 2001. The cytoskeleton and cell volume regulation. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 130 (3): 385–399.

    Article  Google Scholar 

  • Perrineau M M, Zelzion E, Gross J, Price D C, Boyd J, Bhattacharya D. 2014. Evolution of salt tolerance in a laboratory reared population of Chlamydomonas reinhardtii. Environmental Microbiology, 16 (6): 1 755–1 766.

    Article  Google Scholar 

  • Posada D. 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution, 25 (7): 1 253–1 256.

    Article  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres D L, Darling A, Höhna S, Larget B, Liu L, Suchard M A, Huelsenbeck J P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61 (3): 539–542.

    Article  Google Scholar 

  • Rozema J, Schat H. 2013. Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. Environmental and Experimental Botany, 92: 83–95.

    Article  Google Scholar 

  • Sawan C, Herceg Z. 2010. Histone modifications and cancer. Advances in Genetics, 70: 57–85.

    Article  Google Scholar 

  • Stanier R Y, Kunisawa R, Mandel M, Cohen–Bazire G. 1971. Purification and properties of unicellular blue–green algae (order Chroococcales). Bacteriological Reviews, 35 (2): 171–205.

    Google Scholar 

  • Sudhir P, Murthy S D S. 2004. Effects of salt stress on basic processes of photosynthesis. Photosynthetica, 42 (4): 481–486.

    Article  Google Scholar 

  • Sunday J M, Calosi P, Dupont S, Munday P L, Stillman J H, Reusch T B H. 2014. Evolution in an acidifying ocean. Trends in Ecology & Evolution, 29 (2): 117–125.

    Article  Google Scholar 

  • Trievel R C, Beach B M, Dirk L M A, Houtz R L, Hurley J H. 2002. Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell, 111 (1): 91–103.

    Article  Google Scholar 

  • Vieler A, Wu G X, Tsai C H, Bullard B, Cornish A J, Harvey C, Reca I B, Thornburg C, Achawanantakun R, Buehl C J, Campbell M S, Cavalier D, Childs K L, Clark T J, Deshpande R, Erickson E, Armenia Ferguson A, Handee W, Kong Q, Li XB, Liu B S, Lundback S, Peng C, Roston R L, Sanjaya, Simpson J P, TerBush A, Warakanont J, Zäuner S, Farre E M, Hegg E L, Jiang N, Kuo M H, Lu Y, Niyogi K K, Ohlrogge J, Osteryoung K W, Shachar–Hill Y, Sears B B, Sun YN, Takahashi H, Yandell M, Shiu S H, Benning C. 2012. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet, 8 (11): e1003064.

    Article  Google Scholar 

  • Wagner G P, Kin K, Lynch V J. 2012. Measurement of mRNA abundance using RNA–seq data: RPKM measure is inconsistent among samples. Theory in Biosciences, 131 (4): 281–285.

    Article  Google Scholar 

  • Weeks D P. 2011. Homologous recombination in Nannochloropsis: a powerful tool in an industrially relevant alga. Proceedings of the National Academy of Sciences of the United States of America, 108 (52): 20 859–20 860.

    Article  Google Scholar 

  • Young M D, Wakefield M J, Smyth G K, Oshlack A. 2010. Gene ontology analysis for RNA–seq: Accounting for selection bias. Genome Biology, 11 (2): R14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songwen Wang or Guanpin Yang.

Additional information

Supported by the Fundamental Research Funds for the Central Universities (No. 201762017)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Liang, S., Zhang, Z. et al. Domestication of marine microalga Nannochloropsis oceanica to freshwater medium and the physiological responses. J. Ocean. Limnol. 37, 1353–1362 (2019). https://doi.org/10.1007/s00343-019-8202-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-8202-1

Key word

Navigation