Skip to main content
Log in

Carbon biomass, production rates and export flux of copepods fecal pellets in the Changjiang (Yangtze) River estuary

  • Ecology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Copepod fecal pellets are ubiquitous throughout the oceans. Their production and export can represent a highly efficient pathway of carbon export. However, the role these fecal pellets play in carbon export in the Changjiang (Yangtze) River estuary is not well known. Two cruises were carried out in the Changjiang estuary in the spring and summer of 2013, during which time carbon biomass, production, and export of copepod fecal pellets were studied. Spring and summer fecal pellet carbon biomass ranged 0.30–1.01 mg C/m3 (mean=0.56±0.20 mg C/m3 ) and 0.31–1.18 mg C/m3 (mean=0.64±0.24 mg C/m3), respectively, significantly lower than phytoplankton. At most stations, fecal pellet carbon biomass was higher in surface or subsurface layers than deeper layers. Production rates ranged 0.65–1.49 pellets/(ind.∙h) (mean=1.02±0.27 pellets/(ind.∙h)) in spring and 0.62–1.34 pellets/(ind.∙h) (mean=0.98±0.22 pellets/(ind.∙h)) in summer, within the range reported in previous studies. Higher production rates of fecal pellets occurred at stations with higher chlorophyll a concentrations, and production rates of copepods of size 500–1 000 μm greater than copepods >1 000 μm during both cruises. The potential export flux of fecal pellets was slightly higher in summer (mean=68.95±14.37 mg C/(m2 ∙d)) than spring (mean=52.08±11.33 mg C/(m2 ∙d)) owing to higher summer copepod abundances. To our knowledge, this study is the first of its kind in the Changjiang estuary, and it confirms the significant role of copepod fecal pellets in local carbon export.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayukai T, Nishizawa S. 1986. Defecation rate as a possible measure of ingestion rate of Calanus pacificus (Copepoda: Clanoida). Bull. Plankton. Soc. Jpn., 33 (1): 3–10.

    Google Scholar 

  • Bathmann U V, Noji T T, von Bodungen B. 1990. Copepod grazing potential in late winter in the Norwegian Sea—a factor in the control of spring phytoplankton growth? Mar. Ecol. Prog. Ser., 60: 225–233.

    Article  Google Scholar 

  • Bathmann U V, Noji T T, Voss M, Peinert R. 1987. Copepod fecal pellets: abundance, sedimentation and content at a permanent station in the Norwegian Sea in May/June 1986. Mar. Ecol. Prog. Ser., 38: 45–51.

    Article  Google Scholar 

  • Beaumont K L, Plummer A J, Hosie G W, Ritz D A. 2001. Production and fate of faecal pellets during summer in an East Antarctic fjord. Hydrobiologia, 453–454 (1): 55–65.

    Article  Google Scholar 

  • Belcher A, Iversen M, Manno C, Henson S A, Tarling G A, Sanders R. 2016. The role of particle associated microbes in remineralization of fecal pellets in the upper mesopelagic of the Scotia Sea, Antarctica. Limnol. Oceanogr., 61 (3): 1 049–1 064.

    Article  Google Scholar 

  • Bienfang P K, Harrison P J. 1984. Sinking-rate response of natural assemblages of temperate and subtropical phytoplankton to nutrient depletion. Mar. Biol., 83 (3): 293–300.

    Article  Google Scholar 

  • Bienfang P K. 1981. SETCOL—a technologically simple and reliable method for measuring phytoplankton sinking rates. Can. J. Fish. Aquat. Sci., 38 (10): 1 289–1 294.

    Article  Google Scholar 

  • Butler M, Dam H G. 1994. Production rates and characteristics of fecal pellets of the copepod Acartia tonsa under simulated phytoplankton bloom conditions: implications for vertical fluxes. Mar. Ecol. Prog. Ser., 114: 81–91.

    Article  Google Scholar 

  • Carroll M L, Miquel J C, Fowler S W. 1998. Seasonal patterns and depth-specific trends of zooplankton fecal pellet fluxes in the northwestern Mediterranean Sea. Deep Sea Res. Part I, 45 (8): 1 303–1 318.

    Article  Google Scholar 

  • Chen H J, Liu G X. 2006. Zooplankton community structure in Yangtze River Estuary and adjacent sea area in summer 2006. J. Beijing Norm. Univ. ( Nat. Sci.), 45 (4): 393–398. (in Chinese with English abstract)

    Google Scholar 

  • Dagg M J, Urban-Rich J, Peterson J O. 2003. The potential contribution of fecal pellets from large copepods to the flux of biogenic silica and particulate organic carbon in the Antarctic Polar Front region near 170°W. Deep Sea Res. Part II, 50 (3–4): 675–691.

    Article  Google Scholar 

  • Deibel D. 1990. Still-water sinking velocity of fecal material from the pelagic tunicate Dolioletta gegenbauri. Mar. Ecol. Prog. Ser., 62: 55–60.

    Article  Google Scholar 

  • Edler L. 1979. Recommendations on methods for marine biological studies in the Baltic Sea. In: Phytoplankton and Chlorophyll. The Baltic Marine Biologists, Malmö, Sweden. p.1–38.

    Google Scholar 

  • Eppley R W, Reid F M H, Stickland J D H. 1970. Estimates of phytoplankton crop size, growth rate, and primary production. In: Strickland J D H ed. The Ecology of the Plankton offLa Jolla California in the Period April Through September, 1967. Scripps Institution of Oceanography, La Jolla, California. p.33–42.

  • Frangoulis C, Belkhiria S, Goffart A, Hecq J H. 2001. Dynamics of copepod faecal pellets in relation to a Phaeocystis dominated phytoplankton bloom: characteristics, production and flux. J. Plankton Res., 23 (1): 75–88.

    Article  Google Scholar 

  • Gleiber M R, Steinberg D K, Schofield O M E. 2015. Copepod summer grazing and fecal pellet production along the Western Antarctic Peninsula. J. Plankton Res., 38 (3): 732–750.

    Article  Google Scholar 

  • González H E, González S R, Brummer J G. 1994. Short-term sedimentation pattern of zooplankton, faeces and microplankton at a permanent station in the Bjørnafjorden (Norway) during April–May 1992. Mar. Ecol. Prog. Ser., 105: 31–45.

    Article  Google Scholar 

  • González H E, Hebbeln D, Iriarte J L, Marchant M. 2004. Downward fluxes of faecal material and microplankton at 2300 m depth in the oceanic area offCoquimbo (30°S), Chile, during 1993–1995. Deep Sea Res. Part II, 51 (20–21): 2 457–2 474.

    Article  Google Scholar 

  • González H E, Ortiz V C, Sobarzo M. 2000. The role of faecal material in the particulate organic carbon flux in the northern Humboldt Current, Chile (23°S), before and during the 1997–199. El Niño. J. Plankton Res., 22 (3): 499–529.

    Article  Google Scholar 

  • Gowing M M, Garrison D L, Kunze H B, Winchell C J. 2001. Biological components of Ross Sea short-term particle fluxes in the austral summer of 1995–1996. Deep Sea. Res. Pert I, 48 (12): 2 645–2 671.

    Article  Google Scholar 

  • Guo S J, Sun J, Zhao Q B, Feng Y Y, Huang D J, Liu S M. 2016. Sinking rates of phytoplankton in the Changjiang (Yangtze River) estuary: a comparative study between Prorocentrum dentatum and Skeletonema dorhnii bloom. J. Mar. Sys., 154: 5–14.

    Article  Google Scholar 

  • Hernández-León S, Almeida C, Yebra L, Arístegui J. 2002. Lunar cycle of zooplankton biomass in subtropical waters: biogeochemical implications. J. Plankton Res., 24 (9): 935–939.

    Article  Google Scholar 

  • Iversen M H, Poulsen L K. 2007. Coprorhexy, coprophagy, and coprochaly in the copepods Calanus helgolandicus, Pseudocalanus elongatus, and Oithona similis. Mar. Ecol. Prog. Ser., 350: 79–89.

    Article  Google Scholar 

  • Juul-Pedersen T, Nielsen T G, Michel C, Møller E F, Tiselius P, Thor P, Olesen M, Selander E, Gooding S. 2006. Sedimentation following the spring bloom in Disko Bay, West Greenland, with special emphasis on the role of copepods. Mar. Ecol. Prog. Ser., 314: 239–255.

    Article  Google Scholar 

  • Lampitt R S, Noji T, von Bodungen B. 1990. What happens to zooplankton faecal pellets? Implications for material flux. Mar. Biol., 104 (1): 15–23.

    Article  Google Scholar 

  • Lane P V Z, Smith S L, Urban J L, Biscaye P E. 1994. Carbon flux and recycling associated with zooplanktonic fecal pellets on the shelf of the Middle Atlantic Bight. Deep Sea Res. Part II, 41 (2–3): 437–457.

    Article  Google Scholar 

  • Manno C, Stowasser G, Enderlein P, Fielding S, Tarling G A. 2015. The contribution of zooplankton faecal pellets to deep-carbon transport in the Scotia Sea (Southern Ocean). Biogeosciences, 12 (6): 1 955–1 965.

    Article  Google Scholar 

  • Martens P, Krause M. 1990. The fate of faecal pellets in the North Sea. Helgol. Meeresunt., 44 (1): 9–19.

    Article  Google Scholar 

  • Mauchline J. 1998. The biology of calanoid copepods. In: Mauchline J ed. Advances in Marine Biology. Academic Press, San Diego, California. p.710–711.

    Google Scholar 

  • Mayor D J, Sanders R, Giering S L C, Anderson T R. 2014. Microbial gardening in the ocean’s twilight zone: detritivorous metazoans benefit from fragmenting, rather than ingesting, sinking detritus. BioEssays, 36 (12): 1 132–1 137.

    Article  Google Scholar 

  • Møller E F, Borg C M A, Jónasdóttir S H, Satapoomin S, Jaspers C, Nielsen T G. 2011. Production and fate of copepod fecal pellets across the southern Indian Ocean. Mar. Biol., 158 (3): 677–688.

    Article  Google Scholar 

  • Morales C E, Harris R P, Head R N, Tranter P R G. 1993. Copepod grazing in the oceanic northeast Atlantic during a 6 week drifting station: the contribution of size classes and vertical migrants. J. Plankton Res., 15 (2): 185–212.

    Article  Google Scholar 

  • Ning X R, Shi J X, Cai Y M, Liu C G. 2004. Biological productivity front in the Changjiang Estuary and the Hangzhou Bay and its ecological effects. Acta Oceanol. Sin ica, 26 (6): 96–106. (in Chinese with English abstract)

    Google Scholar 

  • Pasternak A, Arashkevich E, Riser C W, Ratkova T, Wassmann P. 2000. Seasonal variation in zooplankton and suspended faecal pellets in the subarctic Norwegian Baisfjorden, in 1996. Sarsia, 85 (5–6): 439–452.

    Article  Google Scholar 

  • Patonai K, El-Shaffey H, Paffenhöfer G A. 2011. Sinking velocities of fecal pellets of doliolids and calanoid copepods. J. Plankton Res., 33 (7): 1 146–1 150.

    Article  Google Scholar 

  • Poulsen L K, Kiørboe T. 2006. Vertical flux and degradation rates of copepod fecal pellets in a zooplankton community dominated by small copepods. Mar. Ecol. Prog. Ser., 323: 195–204.

    Article  Google Scholar 

  • Riebesell U, Reigstad M, Wassmann P, Noji T, Passow U. 1995. On the trophic fate of Phaeocystis pouchetii (hariot): VI. Significance of Phaeocystis-derived mucus for vertical flux. Neth. J. Sea Res., 33 (2): 193–203.

    Article  Google Scholar 

  • Small L F, Fowler S W, Ünlü M Y. 1979. Sinking rates of natural copepod fecal pellets. Mar. Biol., 51 (3): 233–241.

    Article  Google Scholar 

  • Sun J, Liu D Y. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res., 25 (11): 1 331–1 346.

    Article  Google Scholar 

  • Svensen C, Wexels Riser C W, Reigstad M, Seuthe L. 2012. Degradation of copepod faecal pellets in the upper layer: role of microbial community and Calanus finmarchicus. Mar. Ecol. Prog. Ser., 462: 39–49.

    Article  Google Scholar 

  • Tsuda A, Nemoto T. 1990. The effect of food concentration on the fecal pellet size of the marine copepod Pseudocalanus newmani frost. Bull. Plankton Soc. Jpn., 37: 83–90.

    Google Scholar 

  • Turner J T. 2002. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat. Microb. Ecol., 27: 57–102.

    Article  Google Scholar 

  • Turner J T. 2015. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog. Oceanogr., 130: 205–248.

    Article  Google Scholar 

  • Urban-Rich J L. 1997. Latitudinal variations in the contribution by copepod fecal pellets to organic carbon and amino acid flux. University of Maryland, College Park, USA. p.188–189.

    Google Scholar 

  • Urban-Rich J, Nordby E, Andreassen I J, Wassman P, Høisæter T. 1999. Contribution by mezooplankton focal pellets to the carbon flux on Nordvestkbanken, north Norwegian shelf in 1994. Sarsia, 84 (3–4): 253–264.

    Article  Google Scholar 

  • Utermöhl H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. Int. Ver. Theor. Angew. Limnol., 9: 1–38.

    Google Scholar 

  • Verity P G, Smetacek V. 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. Ser., 130: 177–293.

    Article  Google Scholar 

  • Viitasalo M, Rosenberg M, Heiskanen A S, Koski M. 1999. Sedimentation of copepod fecal material in the coastal northern Baltic Sea: where did all the pellets go? Limnol. Oceanogr., 44 (6): 1 388–1 399.

    Google Scholar 

  • Wassmann P, Hansen L, Andreassen I J, Wexels Riser C W, Urban-Rich J, Båmstedt U. 1999. Distribution and sedimentation of faecal on the Nordvestbanken shelf, northern Norway, in 1994. Sarsia, 84 (3–4): 239–252.

    Article  Google Scholar 

  • Wassmann P. 1998. Retention versus export food chains: processes controlling sinking loss from marine pelagic systems. Hydrobiologia, 363 (1–3): 29–57.

    Google Scholar 

  • Welschmeyer N A. 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr., 39 (8): 1 985–1 992.

    Article  Google Scholar 

  • Wexels Riser C W, Reigstad M, Wassmann P, Arashkevich E, Falk-Petersen S. 2007. Export or retention? Copepod abundance, faecal pellet production and vertical flux in the marginal ice zone through snap shots from the northern Barents Sea. Polar Biol., 30 (6): 719–730.

    Article  Google Scholar 

  • Wexels Riser C W, Wassmann P, Olli K, Arashkevich E. 2001. Production, retention and export of zooplankton faecal pellets on and offthe Iberian shelf, north-west Spain. Prog. Oceanogr., 51 (2–4): 423–441.

    Article  Google Scholar 

  • Wexels Riser C W, Wassmann P, Olli K, Pasternak A, Arashkevich E. 2002. Seasonal variation in production, retention and export of zooplankton faecal pellets in the marginal ice zone and central Barents Sea. J. Mar. Sys., 38 (1–2): 175–188.

    Article  Google Scholar 

  • Wexels Riser C W, Wassmann P, Reigstad M, Seuthe L. 2008. Vertical flux regulation by zooplankton in the northern Barents Sea during Arctic spring. Deep Sea Res. Part II, 55 (20–21): 2 320–2 329.

    Article  Google Scholar 

  • Wilson S E, Steinberg D K, Buesseler K O. 2008. Changes in fecal pellet characteristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean. Deep Sea Res. Part II, 55 (14–15): 1 636–1 647.

    Article  Google Scholar 

  • Xu Z L, Hong B, Zhu M Y, Chen Y Q. 2003. Ecological characteristics of zooplankton in frequent HAB areas of the East China Sea in spring. Chin. J. Appl. Ecol., 14 (7): 1 081–1 085. (in Chinese with English abstract)

    Google Scholar 

  • Xu Z L, Shen X Q, Ma S W. 2005. Ecological characters of zooplankton dominant species in the waters near the Changjiang estuary in spring and summer. Mar. Sci., 29 (12): 13–19. (in Chinese with English abstract)

    Google Scholar 

  • Yoon W D, Kim S K, Han K N. 2001. Morphology and sinking velocities of fecal pellets of copepod, molluscan, euphausiid, and salp taxa in the northeastern tropical Atlantic. Mar. Biol., 139 (5): 923–928.

    Article  Google Scholar 

  • Zhai W D, Dai M H. 2009. On the seasonal variation of air-sea CO2 fluxes in the outer Changjiang (Yangtze River) Estuary, East China Sea. Mar. Chem., 117 (1–4): 2–10.

    Article  Google Scholar 

Download references

Acknowledgement

We thank the crew and captain of the R/V Dongfanghong2 and R/V Beidou for logistical support during the cruise. Temperature and salinity data were provided by Professor HUANG Daji.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxia Sun  (孙晓霞).

Additional information

Supported by the Innovation Plan of Science and Technology for AoShan (No. 2016ASKJ02), the National Basic Research Program of China (973 Program) (No. 2014CB441504), the “Strategic Priority Research Program-Western Pacific Ocean System” of Chinese Academy of Sciences (No. XDA11030204), and the National Natural Science Foundation of China (No. 31700425)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Sun, X. Carbon biomass, production rates and export flux of copepods fecal pellets in the Changjiang (Yangtze) River estuary. J. Ocean. Limnol. 36, 1244–1254 (2018). https://doi.org/10.1007/s00343-018-7057-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-018-7057-1

Keyword

Navigation