Skip to main content
Log in

Isolation and characterization of halophilic bacteria and archaea from salt ponds in Hangu Saltworks, Tianjin, China

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

A total of 26 isolates were obtained from solar salt ponds of different salinities (100, 150, 200, and 250) in Hangu Saltworks Co. Ltd., Tianjin, China. Phylogenetic analysis of 16S rRNA gene sequences indicated that five bacteria genera Halomonas, Salinicoccus, Oceanobacillus, Gracibacillus, and Salimicrobium and one archaea genera Halorubrum were present. The genus Halomonas was predominant with eight strains distributed in a salinity range of 100–200, followed by Halorubrum with six strains in salinity 250. Based on the genus and original sampling salinity, eight bacterial and two archaeal isolates were selected for further morphological, physiological, and biochemical characterization. All of the bacterial strains were moderately halophilic with the optimal salinity for growth being either 50 or 100, while two archaeal strains were extremely halophilic with an optimal growth salinity of 200. Additionally, we put forth strain SM.200-5 as a new candidate Salimicrobium species based on the phylogenic analysis of the 16S rRNA gene sequence and its biochemical characteristics when compared with known related species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antón J, Rosselló-Mora R, Rodríguez-Valera F, Amann R. 2000. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl. Environ. Microbiol., 66(7): 3 052–3 057.

    Article  Google Scholar 

  • Asker D, Ohta Y. 1999. Production of canthaxanthin by extremely halophilic bacteria. J. Biosci. Bioengin., 88(6): 617–621.

    Article  Google Scholar 

  • Asker D, Ohta Y. 2002. Haloferax alexandrinus sp. nov., an extremely halophilic canthaxanthin-producing archaeon from a solar saltern in Alexandria (Egypt). J. Syst. Evol. Microbiol., 52(3): 729–738.

    Article  Google Scholar 

  • Chen L, Wang G Y, Bu T, Zhang Y B, Liu M, Zhang J, Lin X K. 2010. Identification of a moderately halophilic bacterium whb45 and screening of its antimicrobial and antitumor activity. Microbio l ogy China, 37(1): 85–90. (in Chinese with English abstract)

    Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson T J, Higgins D G, Thompson J D. 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res., 31(13): 3 497–3 500.

    Article  Google Scholar 

  • Cui H L, Lin Z Y, Dong Y, Zhou P J, Liu S J. 2007. Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. J. Syst. Evol. Microbiol., 57(10): 2 204–2 206.

    Article  Google Scholar 

  • Fang C J, Ku K L, Lee M H, Su N W. 2010. Influence of nutritive factors on C 50 carotenoids production by Haloferax mediterranei ATCC 33500 with two-stage cultivation. Biores. Technol., 101(16): 6 487–6 493.

    Article  Google Scholar 

  • Javor B J. 2002. Industrial microbiology of solar salt production. J. Ind. Microbial. Biotechnol., 28(1): 42–47.

    Article  Google Scholar 

  • Jones A G, Ewing C M, Melvin M V. 1981. Biotechnology of solar saltfields. Hydrobiologia, 81–82: 391–406.

    Article  Google Scholar 

  • Litchfield C D. 2011. Potential for industrial products from the halophilic Archaea. J. Ind. Microbiol. Biotechnol., 38(10): 1 635–1 647.

    Article  Google Scholar 

  • Lizama C, Monteoliva-Sánchez M, Prado B, Ramos-Cormenzana A, Weckesser J, Campos V. 2001. Taxonomic study of extreme halophilic archaea isolated from the “Salar de Atacama”, Chile. J. Syst. Appl. Microbiol., 24(3): 464–474.

    Article  Google Scholar 

  • Montalvo-Rodríguez R, Ruíz-Acevedo A, López-Garriga J. 1997. New isolates of extremely halophilic Archaebacteria (Halobacteria) from Puerto Rico and the Caribbean. Caribbean J. Sci., 33(1–2): 98–104.

    Google Scholar 

  • Olsen G J. 1994. Microbial ecology. Archaea, archaea, everywhere. Nature, 731: 657–658.

    Article  Google Scholar 

  • Oren A. 2002. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol., 28(1): 237–243.

    Article  Google Scholar 

  • Oren A, Rodríguez-Valera F. 2001. The contribution of halophilic bacteria to the red coloration of saltern crystallizer ponds. FEMS Microbiol. Ecol., 36(2–3): 123–130.

    Google Scholar 

  • Quillaguamán J, Hashim S, Bento F, Mattiasson B, Hatti-Kaul R. 2005. Poly (β-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1 using starch hydrolysate as substrate. J. Appl. Microbiol., 99(1): 151–157.

    Article  Google Scholar 

  • Pašić L, Bartual S G, Ulrih N P, Grabnar M, Velikonja B H. 2005. Diversity of halophilic archaea in the crystallizers of an Adriatic solar saltern. FEMS Microbiol. Ecol., 54(3): 491–498.

    Article  Google Scholar 

  • Pathak A P, Sardar A G. 2012. Isolation and characterization of carotenoid producing Haloarchaea from solar saltern of Mulund, Mumbai, India. Indian J. Nat. Prod. and Res., 3(4): 483–488.

    Google Scholar 

  • Rodríguez-Valera F, Ventosa A, Juez G, Imhoff J F. 1985. Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern. Microbial Ecol., 11(2): 107–115.

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 28(10): 2 731–2 739.

    Article  Google Scholar 

  • Tan D, Xue Y S, Aibaidula G, Chen G Q. 2011. Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Biores. Technol., 102(17): 8 130–8 136.

    Article  Google Scholar 

  • Vreeland R H, Litchfield C D, Martin E L, Elliot E. 1980. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int. J. Syst. Bacteriol., 30(2): 485–495.

    Article  Google Scholar 

  • Wais A C. 1988. Recovery of halophilic archaebacteria from natural environments. FEMS Microbiol. Ecol., 53(3–4): 211–216.

    Article  Google Scholar 

  • Yeon S H, Jeong W J, Park J S. 2005. The diversity of culturable organotrophic bacteria from local solar salterns. J. Microbiol., 43(1): 1–10.

    Google Scholar 

  • Yoon J H, Kang S J, Oh K H, Oh T K. 2009. Salimicrobium flavidum sp. nov., isolated from a marine solar saltern. J. Syst. Evol. Microbiol., 59(Pt 11): 2 839–2 842.

    Article  Google Scholar 

  • Zahran H H. 1997. Diversity, adaptation and activity of the bacterial flora in saline environments. Biol. Fertil. Soils, 25(3): 211–223.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liying Sui  (隋丽英).

Additional information

Supported by the International Cooperation Research Program of the Ministry of Science & Technology of China (No. 2010DFA32300), the Natural Science Foundation of Tianjin (No. 13JCZDJC28700), and the Foundation of Tianjin Key Laboratory of Marine Resources and Chemistry (No. 201105)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Xu, G. & Sui, L. Isolation and characterization of halophilic bacteria and archaea from salt ponds in Hangu Saltworks, Tianjin, China. Chin. J. Ocean. Limnol. 33, 862–868 (2015). https://doi.org/10.1007/s00343-015-4159-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4159-x

Keyword

Navigation