Skip to main content
Log in

Evaluation of wind vectors observed by HY-2A scatterometer using ocean buoy observations, ASCAT measurements, and numerical model data

  • Remote sensing
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The first Chinese microwave ocean environment satellite HY-2A was launched successfully in August, 2011. This study presents a quality assessment of HY-2A scatterometer (HYSCAT) data based on comparison with ocean buoy data, the Advanced Scatterometer (ASCAT) data, and numerical model data from the National Centers for Environmental Prediction (NCEP). The in-situ observations include those from buoy arrays operated by the National Data Buoy Center (NDBC) and Tropical Atmosphere Ocean (TAO) project. Only buoys located offshore and in deep water were analyzed. The temporal and spatial collocation windows between HYSCAT data and buoy observations were 30 min and 25 km, respectively. The comparisons showed that the wind speeds and directions observed by HYSCAT agree well with the buoy data. The root-mean-squared errors (RMSEs) of wind speed and direction for the HYSCAT standard wind products are 1.90 m/s and 22.80°, respectively. For the HYSCAT-ASCAT comparison, the temporal and spatial differences were limited to 1 h and 25 km, respectively. This comparison yielded RMSEs of 1.68 m/s for wind speed and 19.1° for wind direction. We also compared HYSCAT winds with reanalysis data from NCEP. The results show that the RMSEs of wind speed and direction are 2.6 m/s and 26°, respectively. The global distribution of wind speed residuals (HYSCAT-NCEP) is also presented here for evaluation of the HYSCAT-retrieved wind field globally. Considering the large temporal and spatial differences of the collocated data, it is concluded that the HYSCAT-retrieved wind speed and direction met the mission requirements, which were 2 m/s and 20° for wind speeds in the range 2–24 m/s. These encouraging assessment results show that the wind data obtained from HYSCAT will be useful for the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bentamy A, Croize-Fillon D, Perigaud C. 2008. Characterization of ASCAT measurements based on buoy and QuikSCAT wind vector observations. Ocean Science, 4 (4): 265–274, http://dx.doi.org/10.5194/os-4-265-2008.

    Article  Google Scholar 

  • Bourassa M A, Freilich M H, Legler D M, Liu W T, O’Brien J J. 1997. Wind observations from new satellite and research vessels agree. EOS, Transactions American Geophysical Union, 78 (51): 597–602, http://dx.doi.org/10.1029/97EO00357.

    Article  Google Scholar 

  • Bourassa M A, Legler D M, O’Brien J J, Smith S R. 2003. SeaWinds validation with research vessels. Journal of Geophysical Research. Oceans. 1978-2012, 108 (C2):3019, http://dx.doi.org/10.1029/2001JC001028.

    Google Scholar 

  • Chelton D B, Freilich M H. 2005. Scatterometer-based assessment of 10-m wind analyses from the operational ECMWF and NCEP numerical weather prediction models. Monthly Weather Review, 133 (2): 409–429, http://dx.doi.org/10.1175/MWR-2861.1.

    Article  Google Scholar 

  • Dickinson S, Kelly K A, Caruso M J, McPhaden M J. 2001. Comparisons between the TAO buoy and NASA scatterometer wind vectors. Journal of Atmospheric and Oceanic Technology, 18 (5): 799–806, http://dx.doi.org/10.1175/1520-0426(2001)018<0799:CBTTBA>2.0.CO;2.

    Article  Google Scholar 

  • Donelan M A, Pierson W. 1987. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. Journal of Geophysical Research. Ocean. (1978-2012), 92 (C5): 5 971–5 029, http://dx.doi.org/10.1029/JC092iC05p04971.

    Google Scholar 

  • Dong X L, Lang S Y, Wang T, Liu H G. 2007. Accuracy and resolution analysis of the pencil beam radar scatterometer onboard China’s HY-2 satellite. In. IGARs. 2007. IEEE International Geoscience and Remote Sensing Symposium. IEEE, Barcelona. p.4 467–4 470, http://dx.doi.org/10.1109/IGARSS.2007.4423847.

    Chapter  Google Scholar 

  • Draper D W, Long D G. 2002. An assessment of SeaWinds on QuikSCAT wind retrieval. Journal of Geophysical Research. Oceans. 1978-2012), 107 (C12): 5–1-5-14,http://dx.doi.org/10.1029/2002JC001330.

    Google Scholar 

  • Ebuchi N. 1999. Statistical distribution of wind speeds and directions globally observed by NSCAT. Journal of Geophysical Research. Oceans. 1978-2012), 104 (C5): 11 393–11 403, http://dx.doi.org/10.1029/98JC02061.

    Google Scholar 

  • Ebuchi N, Graber H C, Caruso M J. 2002. Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. Journal of Atmospheric. Oceanic Technology, 19 (12): 2 049–2 062, http://dx.doi.org/10.1175/1520-0426(2002)019<2049:EOWVOB>2.0.CO;2.

    Article  Google Scholar 

  • Fairall C W, Bradley E F, Hare J E, Grachev A A, Edson J B. 2003. Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. Journal of. limate, 16 (4): 571–591, http://dx.doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    Article  Google Scholar 

  • Freilich M H, Dunbar R s. 1999. The accuracy of the NSCAT. vector winds: comparisons with National Data Buoy Center buoys. {iJournal of Geophysical Research. Oceans. 1978-2012)}, 104 (C5): 11 231–11 246, http://dx.doi.org/ 10.1029/1998JC900091.

    Google Scholar 

  • Hersbach H, Stoffelen A, De Haan S. 2007. An improved C-band scatterometer ocean geophysical model function: CMOD5. Journal of Geophysical Research. Oceans. 1978-2012), 112 (C3): C03006, http://dx.doi.org/10.1029/2006JC003743.

    Google Scholar 

  • Jiang X W, Lin M S, Liu J Q, Zhang Y G, Xie X T, Peng H L, Zhou W. 2012. The HY-2 satellite and its preliminary assessment. International Journal of Digital Earth, 5 (3): 266–281, http://dx.doi.org/10.1080/17538947.2012.658685.

    Article  Google Scholar 

  • Keller W C, Plant W J, Weissman D E. 1985. The dependence of X band microwave sea return on atmospheric stability and sea state. Journal of Geophysical Research. Oceans. 1978-2012), 90 (C1): 1 019–1 029, http://dx.doi.org/10.1029/JC090iC01p01019.

    Google Scholar 

  • Kelly K A, Dickinson S, McPhaden M J, Johnson G C. 2001. Ocean currents evident in satellite wind data. Geophysical Research Letters, 28 (12): 2 469–2 472, http://dx.doi.org/10.1029/2000GL012610.

    Article  Google Scholar 

  • Li D W, Shen H. 2014. Construction of geophysical model function for. platform-borne C-band microwave scatterometer. Ocean Engineering, 84. 157–163, http://dx.doi.org/10.1016/j.oceaneng.2014.04.012.

    Article  Google Scholar 

  • Liu W T. 2002. Progress in scatterometer application. Journal of Oceanography, 58 (1): 121–136, http://dx.doi.org/10.1023/A:1015832919110.

    Article  Google Scholar 

  • Long D G, Endel J M. 1991. Identifiability in wind estimation from scatterometer measurements. IEEE Transactions on Geoscience and Remote Sensing, 29 (2): 268–276, http://dx.doi.org/10.1109/36.73668.

    Article  Google Scholar 

  • Masuko H, Arai K, Ebuchi N, Konda M, Kubota M, Kutsuwada K, Manabe T, Mukaida A, Nakazawa T, Nomura A. 2000. Evaluation of vector winds observed by NSCAT in the seas around Japan. Journal of Oceanography, 56 (5): 495–505, http://dx.doi.org/10.1023/A:1011192725800.

    Article  Google Scholar 

  • McPhaden M J, Busalacchi A J, Cheney R, Donguy J R, Gage K S, Halpern D, Ji M, Julian P, Meyers G, Mitchum G T, Niiler P P, Picaut J, Reynolds R W, Smith N, Takeuchi K. 1998. The Tropical Ocean-Global Atmosphere observing system:. decade of progress. Journal of Geophysical Research. Ocean. (1978-2012), 103 (C7): 14 169–14 240, http://dx.doi.org/10.1029/97JC02906.

    Article  Google Scholar 

  • Meindl E A, Hamilton G D. 1992. Programs of the national data buoy center. Bulletin of the American Meteorological Society, 73 (7): 985–993, http://dx.doi.org/10.1175/1520-0477(1992)073<0985:POTNDB>2.0.CO;2.

    Article  Google Scholar 

  • Offiler D. 1994. The calibration of Ers-1 satellite scatterometer winds. Journal of Atmospheric and Oceanic Technology, 11 (4): 1 002–1 017, http://dx.doi.org/10.1175/1520-0426 (1994)011<1002:TCOSSW>2.0.CO;2.

    Article  Google Scholar 

  • Risien C M, Chelton D B. 2008 A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. Journal of Physical Oceanography, 38 (11): 2 379–2 413, http://dx.doi.org/10.1175/2008JPO3881.1.

    Article  Google Scholar 

  • Wentz F J, Smith D K. 1999. A model function for the oceannormalized radar cross section at 14 GHz derived from NSCAT observations. Journal of Geophysical Research. Oceans. 1978-2012), 104 (C5): 11 499–11 514, http://dx.doi.org/10.1029/98JC02148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Shen  (申辉).

Additional information

Supported by the National High Technology Research and Development Program of China (863 Program) (No. 2013AA09A505), the National Natural Science Foundation of China (No. 40906091), and the Open Project of School of Marine Sciences, Nanjing University of Information Science and Technology (No. KHYS1304)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Shen, H. Evaluation of wind vectors observed by HY-2A scatterometer using ocean buoy observations, ASCAT measurements, and numerical model data. Chin. J. Ocean. Limnol. 33, 1191–1200 (2015). https://doi.org/10.1007/s00343-015-4136-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4136-4

Keyword

Navigation