Skip to main content
Log in

Transcriptomic analysis of Synechocystis sp. PCC6803 under low-temperature stress

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

In this study, cDNA microarrays were developed from 3569 mRNA reads to analyze the expression profiles of the transcriptomes of Synechocystis sp. PCC6803 under low temperature (LT) stress. Among the genes on the cDNA microarrays, 899 LT-affected genes exhibited a 1.5-fold (or greater) difference in expression compared with the genes from normal unstressed Synechocystis sp. PCC6803. Of the differentially expressed genes, 353 were up-regulated and 246 were down-regulated. The results showed that genes involved in photosynthesis were activated at LT (10°C), including genes for photosystem I, photosystem II, photosynthetic electron transport, and cytochrome b6/f complex. Moreover, desB, one of four genes that encode the fatty acid desaturases, was also induced by LT. However, the LT conditions to some degree enhanced the transcription of some genes. In addition, LT (10°C) may reduce cellular motility by regulating the transcription of spkA (sll1575), a serine/threonine protein kinase. The results reported in this study may contribute to a better understanding of the responses of the Synechocystis cell to LT, including pathways involved in photosynthesis and repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Hik:

histidine kinase

STK:

serine/threonine protein kinase

Rre:

response regulator

LT:

low-temperature stress

PSI:

photosystem I

PSII:

photosystem II

Cyt.b6:

cytochrome B6/f complex

PET:

photosynthetic electron transport

References

  • Appleby J L, Parkinson J S, Bourret R B. 1996. Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell, 86: 845–848.

    Article  Google Scholar 

  • Browse J, Xin Z. 2001. Temperature sensing and cold acclimation. Curr. Opin. Plant Biol., 4: 241–246.

    Article  Google Scholar 

  • Chang C, Kwok S F, Bleecker A B, Meyerowitz E M. 1993. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science, 262: 539–544.

    Article  Google Scholar 

  • Galkin A N, Mikheeva L E, Shestakov S V. 2003. Insertional inactivation of genes encoding eukaryotic type serine/threonine protein kinases in cyanobacterium Synechocystis sp. PCC 6803. Mikrobiologiia, 72: 64–69.

    Google Scholar 

  • Galperin M Y, Nikolskaya A N, Koonin E V. 2001. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol. Lett., 203: 11–21.

    Article  Google Scholar 

  • Gao Q, Wang W, Zhao H, Lu X. 2012. Effects of fatty acid activation on photosynthetic production of fatty acidbased biofuels in Synechocystis sp. PCC6803. Biotechnol. Biofuels, 5: 17.

    Article  Google Scholar 

  • Gibson S, Arondel V, Iba K, Somerville C. 1994. Cloning of a temperature-regulated gene encoding a chloroplast omega-3 desaturase from Arabidopsis thaliana. Plant Physiol., 106: 1 615–1 621.

    Article  Google Scholar 

  • Gilmour S J, Artus N N, Thomashow M F. 1992. cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol. Biol., 18: 13–21.

    Article  Google Scholar 

  • Inaba M, Suzuki I, Szalontai B, Kanesaki Y, Los D A, Hayashi H, Murata N. 2003. Gene-engineered rigidification of membrane lipids enhances the cold inducibility of gene expression in S ynechocystis. J. Biol. CheM, 278: 12 191–12 198.

    Article  Google Scholar 

  • Jones P G, VanBogelen R A, Neidhardt F C. 1987. Induction of proteins in response to low temperature in Escherichia coli. J. Bacteriol., 169: 2 092–2 095.

    Google Scholar 

  • Kakimoto T. 1996. CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science, 274: 982–985.

    Article  Google Scholar 

  • Kamei A, Yoshihara S, Yuasa T, Geng X, Ikeuchi M. 2003. Biochemical and functional characterization of a eukaryotic-type protein kinase, SpkB, in the cyanobacterium, Synechocystis sp. PCC 6803. Curr. Microbiol., 46: 296–301.

    Article  Google Scholar 

  • Kamei A, Yuasa T, Geng X, Ikeuchi M. 2002. Biochemical examination of the potential eukaryotic-type protein kinase genes in the complete genome of the unicellular Cyanobacterium S ynechocystis sp. PCC 6803. DNA Res., 9: 71–78.

    Article  Google Scholar 

  • Kamei A, Yuasa T, Orikawa K, Geng X X, Ikeuchi M. 2001. A eukaryotic-type protein kinase, SpkA, was required for normal motility of the unicellular cyanobacterium S ynechocystis sp. strain PCC 6803. J. Bacteriol., 183: 1 505–1 510.

    Article  Google Scholar 

  • Kaneko T, Mizuno N. 1996. Spiny stellate neurones in layer VI of the rat cerebral cortex. Neuroreport, 7: 2 331–2 335.

    Article  Google Scholar 

  • Kaneko T, Nakamura Y, Sasamoto S, Watanabe A, Kohara M, Matsumoto M, Shimpo S, Yamada M, Tabata S. 2003. Structural analysis of four large plasmids harboring in a unicellular cyanobacterium, Synechocystis sp. PCC 6803. DNA Res., 10: 221–228.

    Article  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S. 1996. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res., 3: 109–136.

    Article  Google Scholar 

  • Kaneko T, Tanaka A, Sato S, Kotani H, Sazuka T, Miyajima N, Sugiura M, Tabata S. 1995. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. I. Sequence features in the 1 Mb region from map positions 64% to 92% of the genome. DNA Res., 2: 153–166, 191–158.

    Article  Google Scholar 

  • Kato T, Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S. 2003. Structural analysis of a Lotus japonicus genome. V. Sequence features and mapping of sixty-four TAC clones which cover the 6.4 mb regions of the genome. DNA Res., 10: 277–285.

    Article  Google Scholar 

  • Kaye C, Guy C L. 1995. Perspectives of plant cold tolerance: physiology and molecular responses. Sci. Prog., 78(Pt. 4): 271–299.

    Google Scholar 

  • Kim Y H, Park Y M, Kim S J, Park Y I, Choi J S, Chung Y H. 2004. The role of Slr1443 in pilus biogenesis in Synechocystis sp. PCC 6803: involvement in posttranslational modification of pilins. Biochem. Biophys. Res. Commun., 315: 179–186.

    Article  Google Scholar 

  • Laoteng K, Anjard C, Rachadawong S, Tanticharoen M, Maresca B, Cheevadhanarak S. 1999. Mucor rouxii delta9-desaturase gene was transcriptionally regulated during cell growth and by low temperature. Molecular Cell Biology Research Communications, 1: 36–43.

    Article  Google Scholar 

  • Leonard C J, Aravind L, Koonin E V. 1998. Novel families of putative protein kinases in bacteria and archaea: evolution of the “eukaryotic” protein kinase superfamily. Genome Res., 8: 1 038–1 047.

    Google Scholar 

  • Liang C W, Zhang X W, Chi X Y, Guan X, Li Y, Qin S, Shao H B. 2011. Serine/threonine protein kinase SpkG was a candidate for high salt resistance in the unicellular cyanobacterium Synechocystis sp. PCC 6803. PLoS One, 6: e18718.

    Article  Google Scholar 

  • Los D A, Murata N. 2000. Responses to cold shock in cyanobacteria. Cold Shock Response and Adaptation. p.61–83.

    Google Scholar 

  • Los D A, Murata N. 2004. Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta, 1666: 142–157.

    Article  Google Scholar 

  • Los D A, Ray M K, Murata N. 1997. Differences in the control of the temperature-dependent expression of four genes for desaturases in Synechocystis sp. PCC 6803. Mol. Microbiol., 25: 1 167–1 175.

    Article  Google Scholar 

  • Maeda T, Wurgler-Murphy S M Saito H. 1994. A twocomponent system that regulates an osmosensing MAP kinase cascade in yeast. Nature, 369: 242–245.

    Article  Google Scholar 

  • Mansilla M C, de Mendoza D. 2005. The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Arch. Microbiol., 183: 229–235.

    Article  Google Scholar 

  • Mironov K S, Sidorov R A, Trofimova M S, Bedbenov V S, Tsydendambaev V D, Allakhverdiev S I, Los D A. 2012. Light-dependent cold-induced fatty acid unsaturation, changes in membrane fluidity, and alterations in gene expression in Synechocystis. Biochim. Biophys. Acta, 1817: 1 352–1 359.

    Article  Google Scholar 

  • Mizuno T, Kaneko T, Tabata S. 1996. Compilation of all genes encoding bacterial two-component signal transducers in the genome of the cyanobacterium, Synechocystis sp. strain PCC 6803. DNA Res., 3: 407–414.

    Article  Google Scholar 

  • Murata N, Los D A. 1997. Membrane fluidity and temperature perception. Plant Physiol., 115: 875–879.

    Google Scholar 

  • Murata N, Los D A. 2006. Histidine kinase Hik33 was an important participant in cold-signal transduction in cyanobacteria. Physiol. Plantarum, 126: 17–27.

    Article  Google Scholar 

  • Murata N, Wada H. 1995. Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem. J., 308(Pt 1): 1–8.

    Google Scholar 

  • Murata N. 1989. Low-temperature effects on cyanobacterial membranes. Journal of Bioenergetics and Biomembranes, 21: 61–75.

    Article  Google Scholar 

  • Nakashima S, Zhao Y, Nozawa Y. 1996. Molecular cloning of delta 9 fatty acid desaturase from the protozoan Tetrahymena thermophila and its mRNA expression during thermal membrane adaptation. Biochem. J., 317(Pt.1): 29–34.

    Google Scholar 

  • Panichkin V B, Arakawa-Kobayashi S, Kanaseki T, Suzuki I, Los D A, Shestakov S V, Murata N. 2006. Serine/threonine protein kinase SpkA in Synechocystis sp strain PCC 6803 was a regulator of expression of three putative pil4 operons, formation of thick pili, and cell motility. J. Bacteriol., 188: 7 696–7 699.

    Article  Google Scholar 

  • Rippka R, Deruelles J, Waterbury J B, Herdman M, Stanier R Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111: 1–61.

    Article  Google Scholar 

  • Sakamoto T, Los D A, Higashi S, Wada H, Nishida I, Ohmori M, Murata N. 1994. Cloning of omega-3 desaturase from cyanobacteria and its use in altering the degree of membrane-lipid unsaturation. Plant Mol. Biol., 26: 249–263.

    Article  Google Scholar 

  • Sakamoto T, Murata N. 2002. Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Curr. Opin. Microbiol., 5: 208–210.

    Article  Google Scholar 

  • Shi L, Potts M, Kennelly P J. 1998. The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol. Rev., 22: 229–253.

    Article  Google Scholar 

  • Singh A K, Li H, Sherman L A. 2004. Microarray analysis and redox control of gene expression in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol., 120: 27–35.

    Article  Google Scholar 

  • Suzuki I, Kanesaki Y, Mikami K, Kanehisa M, Murata N. 2001. Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol Microbiol., 40: 235–244.

    Article  Google Scholar 

  • Suzuki I, Los D A, Kanesaki Y, Mikami K, Murata N. 2000. The pathway for perception and transduction of lowtemperature signals in Synechocystis. EMBO J., 19: 1 327–1 334.

    Article  Google Scholar 

  • Thieringer H A, Jones P G, Inouye M. 1998. Cold shock and adaptation. Bioessays, 20: 49–57.

    Article  Google Scholar 

  • Tiku P E, Gracey A Y, Macartney A I, Beynon R J, Cossins A R. 1996. Cold-induced expression of delta 9-desaturase in carp by transcriptional and posttranslational mechanisms. Science, 271: 815–818.

    Article  Google Scholar 

  • Vigh L, Los D A, Horvath I, Murata N. 1993. The primary signal in the biological perception of temperature: Pdcatalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803. Proc. Natl. Acad. Sci. USA, 90: 9 090–9 094.

    Article  Google Scholar 

  • Vigh L, Maresca B, Harwood J L. 1998. Does the membrane’s physical state control the expression of heat shock and other genes? Trends Biochem. Sci., 23: 369–374.

    Article  Google Scholar 

  • Vrettos J S, Stewart D H, de Paula J C, Brudvig G W. 1999. Low-temperature optical and resonance Raman spectra of a carotenoid cation radical in photosystem II. J. Phys. Chem. B, 103: 6 403–6 406.

    Article  Google Scholar 

  • Wada H, Gombos Z, Murata N. 1990. Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature, 347: 200–203.

    Article  Google Scholar 

  • Willimsky G, Bang H, Fischer G, Marahiel M A. 1992. Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. J. Bacteriol., 174: 6 326–6 335.

    Google Scholar 

  • Wolfraim L A, Langis R, Tyson H, Dhindsa R S. 1993. cDNA sequence, expression, and transcript stability of a cold acclimation-specific gene, cas18, of alfalfa (Medicago falcata) cells. Plant Physiol., 101: 1 275–1 282.

    Article  Google Scholar 

  • Zhang C C, Gonzalez L, Phalip V. 1998. Survey, analysis and genetic organization of genes encoding eukaryotic-like signaling proteins on a cyanobacterial genome. Nucleic Acids Res., 26: 3 619–3 625.

    Article  Google Scholar 

  • Zorina A, Stepanchenko N, Novikova G V, Sinetova M, Panichkin V B, Moshkov I E, Zinchenko V V, Shestakov S V, Suzuki I, Murata N, Los D A. 2011. Eukaryotic-like Ser/Thr protein kinases SpkC/F/K were involved in phosphorylation of GroES in the cyanobacterium S ynechocystis. DNA Res., 18: 137–151.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaopu Liu  (刘兆普) or Song Qin  (秦松).

Additional information

Supported by the National Natural Science Foundation of China (No. 40876082), the International Innovation Partnership Program: Typical Environmental Process and Effects on Resources in Coastal Zone Area, the Public Science and Technology Research Funds Projects of the Ocean (Nos. 200905021, 201205027), the Outstanding Young Scholars Fellowship of Shandong Province (Molecular Phycology, No. JQ200914), the Natural Science Foundation of Shandong Province (No. ZR2012DQ015), and the Guangdong Province Comprehensive Strategic Cooperation Project of the Chinese Academy of Sciences (No. 2011A090100040)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Cui, H., Liu, Z. et al. Transcriptomic analysis of Synechocystis sp. PCC6803 under low-temperature stress. Chin. J. Ocean. Limnol. 32, 403–418 (2014). https://doi.org/10.1007/s00343-014-3174-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-014-3174-7

Keyword

Navigation