Skip to main content
Log in

Evaluating the impact of spatio-temporal scale on CPUE standardization

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

This study focused on the quantitative evaluation of the impact of the spatio-temporal scale used in data collection and grouping on the standardization of CPUE (catch per unit effort). We used the Chinese squid-jigging fishery in the northwestern Pacific Ocean as an example to evaluate 24 scenarios at different spatio-temporal scales, with a combination of four levels of temporal scale (weekly, biweekly, monthly, and bimonthly) and six levels of spatial scale (longitude×latitude: 0.5°×0.5°, 0.5°×1°, 0.5°×2°, 1°×0.5°, 1°×1°, and 1°×2°). We applied generalized additive models and generalized linear models to analyze the 24 scenarios for CPUE standardization, and then the differences in the standardized CPUE among these scenarios were quantified. This study shows that combinations of different spatial and temporal scales could have different impacts on the standardization of CPUE. However, at a fine temporal scale (weekly) different spatial scales yielded similar results for standardized CPUE. The choice of spatio-temporal scale used in data collection and analysis may create added uncertainty in fisheries stock assessment and management. To identify a cost-effective spatio-temporal scale for data collection, we recommend a similar study be undertaken to facilitate the design of effective monitoring programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike H. 1974. A new look at the statistical model identification. IEEE Trans. Autom. Control., 19(6): 716–723, http://dx.doi.org/10.1109/TAC.1974.1100705.

    Article  Google Scholar 

  • Bellido J M, Pierce G J, Wang J. 2001. Modelling intra-annual variation in abundance of squid Loligo forbes i in Scottish waters using generalized additive models. Fish. Res., 52(1): 23–39, http://dx.doi.org/10.1016/S0165-7836(01)00228-4.

    Article  Google Scholar 

  • Bigelow K A, Boggs C H, He X. 1999. Environmental effects on swordfish and blue shark catch rates in the US North Pacific longline fishery. Fish. Oceanogr., 8(3): 178–198, http://dx.doi.org/10.1046/j.1365-2419.1999.00105.x.

    Article  Google Scholar 

  • Booth A J. 2000. Incorporating the spatial component of fisheries data into stock assessment models. ICES. J. Mar. Sci., 57(4): 858–865, http://dx.doi.org/10.1006/jmsc.2000.0816.

    Article  Google Scholar 

  • Booth A J. 2004. Spatial statistics and aquatic Geographic Information Systems. In: Nishida T, Kailola P J, Hollingworth C E eds. Second International Symposium on GIS/Spatial Analysis in Fisheries and Aquatic Sciences, Brighton, 3–6 September 2002. Fishery/Aquatic GIS Research Group: Kawagoe. p.3–44.

    Google Scholar 

  • Bower J R, Ichii T. 2005. The red flying squid (Ommastrephes bartramii): a review of recent research and the fishery in Japan. Fish. Res., 76(1): 39–55, http://dx.doi.org/10.1016/j.fishres.2005.05.009.

    Article  Google Scholar 

  • Burnham K P, Anderson D R. 2002. Model Selection and Multimodel Inference: A Practical Information-theoretic Approach. Springer, New York. 490p.

    Google Scholar 

  • Campbell R A. 2004. CPUE standardisation and the construction of indices of stock abundance in a spatially varying fishery using general linear models. Fish. Res., 70(2-3): 209–227, http://dx.doi.org/10.1016/j.fishres.2004.08.026.

    Article  Google Scholar 

  • Chen C S, Chiu T S. 1999. Abundance and spatial variation of Ommastrephes bartramii (Mollusca: Cephalopoda) in the eastern North Pacific observed from an exploratory survey. Acta Zoologica Taiwanica., 10(2): 135–144.

    Google Scholar 

  • Chen X J, Liu B L, Chen Y. 2008. A review of the development of Chinese distant-water squid jigging fisheries. Fish. Res., 89(3): 211–221, http://dx.doi.org/10.1016/j.fishres.2007.10.012.

    Article  Google Scholar 

  • Chen X J, Tian S Q. 2005. Ground and surface temperature for Ommastrephes Bartramii in the Northwestern Pacific Ocean. Periodical of Ocean University of China, 35: 101–107. (in Chinese)

    Google Scholar 

  • Chen X J, Tian S Q, Liu B L, Chen Y. 2011. Modeling a habitat suitability index for the eastern fall cohort of Ommastrephes bartramii in the central North Pacific Ocean. Chinese Journal of Oceanology and Limnology, 39(3): 493–504, http://dx.doi.org/10.1007/s00343-011-0058-y.

    Article  Google Scholar 

  • Chen X J, Xu L X, Tian S Q. 2003. Spatial and temporal analysis of Ommastrephe bartramii resources and its fishing ground in North Pacific Ocean. Journal of Fisheries of China, 27: 334–342. (in Chinese)

    Google Scholar 

  • Chen Y, Chen L Q, Stergiou K L. 2003. Impacts of quantity and quality of fisheries data on stock assessment. Aquat. Sci., 65: 92–98, http://dx.doi.org/10.1007/s000270300008.

    Article  Google Scholar 

  • Cooke J G. 1985. On the relationship between catch per unit effort and whale abundance. Rep. Int. Whal. Comm., 35: 511–519.

    Google Scholar 

  • Fan W. 2004. A Study on Application of Satellite Remote Sensing in Marine Fishing-Ground Analysis and Fishing Condition Forecasting-a Case of Ommastrephes bartramii Fisheries in Northwest Pacific Ocean. PhD thesis, East China Normal University, Shanghai. (in Chinese with English abstract)

    Google Scholar 

  • FAO. 1999. Guidelines for the Routine Collection of Capture Fishery Data. FAO Fish. Tech. Paper No. 382, Food and Agriculture Organization of the United Nations, Rome.

    Google Scholar 

  • Hilborn R, Walters C J. 1992. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty. Chapman and Hall, New York. 570p.

    Book  Google Scholar 

  • Legendre L, Fortin M J. 1989. Spatial pattern and ecological analysis. Plant. Ecol., 80: 107–138, http://dx.doi.org/10.1007/BF00048036.

    Article  Google Scholar 

  • Marrs S J, Tuck I D, Atkinson R J A, Stevenson T D I, Hall C. 2002. Position data loggers and logbooks as tools in fisheries research: results of a pilot study and some recommendations. Fish. Res., 58(1): 109–117, http://dx.doi.org/10.1016/S0165-7836(01)00362-9.

    Article  Google Scholar 

  • Maunder M N, Langley A D. 2004. Integrating the standardization of catch-per-unit-of-effort into stock assessment models: testing a population dynamics model and using multiple data types. Fish. Res., 70(2–3): 389–395, http://dx.doi.org/10.1016/j.fishres.2004.08.015.

    Article  Google Scholar 

  • Maunder M N, Punt A E. 2004. Standardizing catch and effort data: a review of recent approaches. Fish. Res., 70(2–3): 141–159, http://dx.doi.org/10.1016/j.fishres.2004.08.002.

    Article  Google Scholar 

  • Maunder M N, Starr P J. 2003. Fitting fisheries models to standardised CPUE abundance indices. Fish. Res., 63(1): 43–50, http://dx.doi.org/10.1016/S0165-7836(03)00002-X.

    Article  Google Scholar 

  • Murata M, Nakamura Y. 1998. Seasonal migration and diel vertical migration of the neon flying squid, Ommastrephes bartramii, in the North Pacific. In: Okutani T ed. Contributed Papers to International Symposium on Large Pelagic Squids, Tokyo, 18–19 July, 1996. Marine Fishery Resources Research Center: Tokyo. p.13–30.

    Google Scholar 

  • Nally R M, Quinn G P. 1998. Symposium introduction: the importance of scale in ecology. Aust. J. Ecol., 23(1): 1–7, http://dx.doi.org/10.1111/j.1442-9993.1998.tb00701.x.

    Article  Google Scholar 

  • Ocean Studies Board (OSB), US National Research Council. 2000. Improving the collection, management, and use of marine fisheries data. The National Academies Press, Washington DC. 222p.

    Google Scholar 

  • Punt A E, Walker T I, Taylorb B L, Pribaca F. 2000. Standardization of catch and effort data in a spatiallystructured shark fishery. Fish. Res., 45(2): 129–145, http://dx.doi.org/10.1016/S0165-7836(99)00106-X.

    Article  Google Scholar 

  • Scheirer K, Chen Y, Wilson C. 2004. A comparative study of American lobsterfishery sea and port samplingprograms in Maine: 1998–2000. Fish. Res., 68(1–3): 343–350, http://dx.doi.org/10.1016/j.fishres.2003.11.003.

    Article  Google Scholar 

  • Shono H. 2008. Application of the Tweedie distribution to zero-catch data in CPUE analysis. Fish. Res., 93(1–2): 154–162, http://dx.doi.org/10.1016/j.fishres.2008.03.006.

    Article  Google Scholar 

  • Su N J, Yeh S Z, Sun C L, Punt A E, Chen Y, Wang S P. 2008. Standardizing catch and effort data of the Taiwanese distant-water longline fishery in the western and central Pacific Ocean for bigeye tuna, Thunnus obesus. Fish. Res., 90(2): 235–246, http://dx.doi.org/10.1016/j.fishres.2007.10.024.

    Article  Google Scholar 

  • Tian S Q, Chen Y, Chen X J, Xu L X, Dai X J. 2009. Impacts of spatial scales of fisheries and environmental data on catch per unit effort standardization. Mar. Freshwater Res., 60(12): 1 273–1 284, http://dx.doi.org/10.1071/MF09087.

    Article  Google Scholar 

  • Venables W N, Dichmont C M. 2004. GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research. Fish. Res., 70(2–3): 319–337, http://dx.doi.org/10.1016/j.fishres.2004.08.011.

    Article  Google Scholar 

  • Verdoit M, Pelletier D, Bellail B. 2003. Are commercial logbook and scientific CPUE data useful for characterizing the spatial and seasonal distribution of exploited populations? The case of the Celtic Sea whiting. Aquat. Living Resour., 16(6): 467–485, http://dx.doi.org/10.1016/j.aquliv.2003.07.002.

    Article  Google Scholar 

  • Wang Y G, Chen X J. 2005. Oceanic Economical Ommastrphidae Squids and Their Fisheries in the World. Ocean Press of China, Beijing. p.36–42. (in Chinese)

    Google Scholar 

  • Wiens J A. 1989. Spatial scaling in ecology. Funct. Ecol., 3(4): 385–397.

    Article  Google Scholar 

  • Yatsu A, Tanaka H, Mori J. 1998. Population structure of the neon flying squid, Ommastrephes bartramii, in the North Pacific. In: Okutani T ed. Contributed papers to International Symposium on Large Pelagic Squids, Tokyo, 18–19 July, 1996. Japan Marine Fishery Resources Research Center: Tokyo. p.31–48.

    Google Scholar 

  • Yatsu A, Watanabe T. 1996. Interannual variability in neon flying squid abundance and oceanographic conditions in the central North Pacific, 1982–1992. Bull. Nat. Res. Inst. Far Sea Fish, 33: 123–138. (in Japanese)

    Google Scholar 

  • Yatsu A, Watanabe T, Tanaka H, Mori J. 1997. Fishing grounds of the large-sized neon flying squid, Ommastrephes bartramii, in the central North Pacific Ocean: results from a jigging survey during 1993–95. Contributions to the Fisheries Researches in the Japan Sea Block, 36: 53–65.

    Google Scholar 

  • Zheng R, Chen G. 2008. Fluctuation in Ommastrephe bartrami i yield in the North Pacific. Chinese Journal of Oceanology and Limnology, 26(4): 353–356, http://dx.doi.org/10.1007/s00343-008-0353-4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjun Chen  (陈新军).

Additional information

Supported by Shanghai Universities First-class Disciplines Project, Discipline name: Fisheries(A), the National Natural Science Foundation of China (No. NSFC41276156), the National High Technology Research and Development Program of China (863 Program) (No. 2012AA092303), and the Shanghai Science and Technology Innovation Program (No. 12231203900).

CHEN Yong’s involvement was supported by the Shanghai Ocean University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, S., Han, C., Chen, Y. et al. Evaluating the impact of spatio-temporal scale on CPUE standardization. Chin. J. Ocean. Limnol. 31, 935–948 (2013). https://doi.org/10.1007/s00343-013-2285-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-013-2285-x

Keyword

Navigation