Skip to main content
Log in

Phytoplankton abundance and community structure in the Antarctic polar frontal region during austral summer of 2009

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The Antarctic polar front region in the Southern Ocean is known to be most productive. We studied the phytoplankton community structure in the Indian sector at this frontal location during late austral summer (February, 2009) onboard R/V Akademic Boris Petrov. We used the phytoplankton and microheterotrophs abundance, as also the associated physico-chemical parameters to explain the low phytoplankton abundance in the study region. This study emphasizes the shift of phytoplankton, from large (>10 μm) to small (<10 μm) size. The phytoplankton abundance appears to be controlled by physical parameters and by nutrient concentrations and also by the microheterotrophs (ciliates and dinoflagellates) which exert a strong grazing pressure. This probably reduces small (<10 μm) and large (>10 μm) phytoplankton abundance during the late austral summer. This study highlights the highly productive polar front nevertheless becomes a region of low phytoplankton abundance, due to community shifts towards pico-phytoplankton (<10 μm) during late austral summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armand L K, Cornet-Barthaux V, Mosseri J et al. 2008. Late summer diatom biomass and community structure on and around the naturally iron-fertilised Kerguelen Plateau in the Southern Ocean. Deep — Sea Res. Pt II., 55: 653–676.

    Article  Google Scholar 

  • Blain S, Quèguiner B, Armand L et al. 2007. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature, 446: 1 070–1 074.

    Article  Google Scholar 

  • Boyd P W, Jickells J, Law C S et al. 2007. Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions. Scienc e, 315: 612–617.

    Google Scholar 

  • Bracher A U, Kroon B M A, Lucas M I. 1999. Primary production, physiological state and composition of phytoplankton in the Atlantic sector of the Southern Ocean. Mar. Ecol. Prog. Ser., 190: 1–16.

    Article  Google Scholar 

  • Brzezinski M A, Nelson D M, Franck V M, Sigmon D E. 2001. Silicon dynamics within an intense open-ocean diatom bloom in the Pacific sector of the Southern Ocean Deep — Sea Res Pt II., Topical Studies in Oceanography, 48(19–20): 3 997–4 018.

    Google Scholar 

  • Brown S L, Landry M R. 2001. Microbial community structure and biomass in surface waters during a Polar Front summer bloom along 170W. Deep — Sea Res. Pt II., 48: 4 039–4 058.

    Google Scholar 

  • Brzezinski M A, Nelsson D M, Franck V M et al. 2001. Silicon dynamics within an intense open-ocean diatom bloom in the Pacific sector of the Southern Ocean. Deep — Sea Res. II, 48: 3 997–4 018.

    Google Scholar 

  • Crosta X, Romero O, Armand L K, Pichon J J. 2005. The biogeography of major diatom taxa in Southern Ocean sediments: 2. Open Ocean related species. Palaeo, 223V: 66–92.

    Article  Google Scholar 

  • De Baar H J W, de Jong J T M, Bakker D C E et al. 1995. Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature, 373: 412–415.

    Article  Google Scholar 

  • De-Pauw N, Naessens F E. 1991. Nutrient induced competition between species of marine diatoms. Hydrobiological Bulletin, 25: 23–28.

    Article  Google Scholar 

  • Dortch Q, Whitledge T E. 1992. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Cont Shelf Res., 12: 1 293–1 309.

    Article  Google Scholar 

  • Dubischar C D, Bathmann U V. 1997. Grazing impact of copepods and salps on phytoplankton in the Atlantic sector of the Southern Ocean. Deep — Sea Res. Pt. II, 44: 415–433.

    Article  Google Scholar 

  • El-Sayed S Z. 1978. Primary productivity and estimates of potential yields of the Southern Ocean. In: McWhinnie M A ed. Polar Research-To the Present and the Future. Westview. p.141–160.

  • Erhardt K, Kremling K. 1983. Determination of nutrients. In: Grasshoff K, Ehrhardt M, Kremling K eds. Methods of Seawater Analysis. Verlag Chemie. p.143–150.

  • Fiala M, Semeneh M, Oriol L. 1998a. Size-fractionated phytoplankton biomass and species composition in the Indian sector of the Southern Ocean during austral summer. J. Mar. Sys., 17: 179–194.

    Article  Google Scholar 

  • Fiala M, Kopczynska E E, Jeandel C et al. 1998b. Seasonal and interannual variability of size-fractionated phytoplankton biomass and community structure at station Kerfix, off the Kerguelen Islands, Antarctica. J. Plankton Res., 20: 1 341–1 356.

    Article  Google Scholar 

  • Fiala M, Machadob M C, Oriola L. 2002. Phytoplankton distribution in the Indian sector of the Southern Ocean during spring. Deep — Sea Res. Pt. II., 49: 1 867–1 880.

    Google Scholar 

  • Gomi Y, Umeda H, Fukuchi M et al. 2005. Diatom assemblages in the surface water of the Indian sector of the Antarctic surface water in summer of 1999/2000. Polar Biosci., 18: 1–15.

    Google Scholar 

  • Gomi Y, Taniguchi A, Fukuchi M. 2007. Temporal and spatial variation of the phytoplankton assemblage in the eastern Indian sector of the Southern Ocean in summer 2001/2002. Polar Biol., 30: 817–827.

    Article  Google Scholar 

  • Gomi Y, Fukuchi M, Taniguchi A. 2010. Diatom assemblages at subsurface chlorophyll maximum layer in the eastern Indian sector of the Southern Ocean in summer. J. Plankton Res., 32: 1 039–1 050.

    Article  Google Scholar 

  • Grasshoff M. 1983. Determination of nitrate. In: Grasshoff K, Ehrhardt M, Kremling K eds. Methods of Seawater Analysis. Verlag Chemie. p.143–187.

  • Helbling E W, Villafane V, Holm-Hansen O. 1991. Effect of iron on productivity and size distribution of Antarctic phytoplankton. Limnol. Oceanogr., 36: 1 879–1 885.

    Article  Google Scholar 

  • Holliday N P, Read J F. 1998. Surface oceanic fronts between Africa and Antarctica. Deep — Sea Res. Part I., 45: 217–238.

    Article  Google Scholar 

  • Hutchins D A, Sedwick P N, DiTullio G R et al. 2001. Control of phytoplankton growth by iron and silicic acid availability in the subantarctic Southern Ocean: experimental results from the SAZ project. J. Geophys. Res., 106: 31 559–31 572.

    Article  Google Scholar 

  • Kist G O, Wiencke C. 1995. Ecophysiology of polar algae. J. Phycol., 31: 181–199.

    Article  Google Scholar 

  • Kostianoy A G, Ginzburg A I, Frankignoulle M et al. 2004. Fronts in the Southern Indian Ocean as inferred from satellite sea surface temperature data. J. Mar. Sys., 45: 55–73.

    Article  Google Scholar 

  • Landry M R, Selph K E, Brown S L et al. 2002. Seasonal dynamics of phytoplankton in the Antarctic Polar Front region at 170 W. Deep — Sea Res Pt II., 49: 1 843–1 865.

    Google Scholar 

  • Lutjeharms J R E, Walters N M, Allanson B R. 1985. Oceanic frontal systems and biological enhancement. In: Siegfried W R, Condy P R, Laws R M eds. Antarctic Nutrient Cycles and Food Webs. Springer, Berlin. p.11–21.

    Google Scholar 

  • Martin J H, Fitzwater S E, Gordon R M. 1990a. Iron deficiency limits phyto-plankton growth in Antarctic waters. Glob. Biogeochem. Cycle., 4: 5–12.

    Article  Google Scholar 

  • Martin J H, Gordon R M, Fitzwater S E. 1990b. Iron in Antarctic waters. Nature, 345: 156–158.

    Article  Google Scholar 

  • Mohan R, Shanvas S, Thamban M et al. 2006. Special distribution of diatoms in surface sediments from Indian sector of Southern Ocean. Current Science, 91: 1 495–1 502.

    Google Scholar 

  • Moore J K, Abbott M R, Richman J G. 1999. Location and dynamics of the Antarctic Polar Front from Satellite Sea surface temperature data. J. Geophsl. Res., 104: 3 059–3 073.

    Google Scholar 

  • Nelson D M, Tréguer P, Brzezinski M A et al. 1995. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cycle., 9: 359–372.

    Article  Google Scholar 

  • Nelson D M, Smith W O Jr. 1991. Sverdrup re-visited: critical depths, maximum chlorophyll levels, and the control of Southern Ocean productivity by the irradiance-mixing regime. Limnol. Oceanogr., 36: 1 650–1 661.

    Article  Google Scholar 

  • Nelson D A, Smith Jr W O. 1986. Phytoplankton bloom dynamics of the western Ross Sea Ice edge II. Mesoscale cycling of nitrogen and silicon. Deep — Sea Res. Part I, 33: 1 389–1 412.

    Google Scholar 

  • Redfield A C, Ketchum B H, Richards F A. 1963. The influence of organisms on the composition of seawater. In: M N Hill ed. The Sea, vol. 2. Interscience. p.26–77.

  • Round F E, Crawford R M, Mann D G. 1990. The Diatoms. Biology and Morphology of the Genera. Cambridge University Press, Cambridge. p.747.

    Google Scholar 

  • Sakshaug E, Slagstad D, Holm-Hansen O. 1991. Factors controlling the development of phytoplankton blooms in the Antarctic Ocean-a mathematical model. Mar. Chem., 35: 259–271.

    Article  Google Scholar 

  • Sancetta C. 1999. Diatoms and marine paleoceanography. In: Smol J P, Stoermer E F eds. The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, p.374–386.

    Google Scholar 

  • Schultes S, Verity P G, Bathmann U. 2006. Copepod grazing during an iron-induced diatom bloom in the Antarctic Circumpolar Current (EisenEx): I. Feeding patterns and grazing impact on prey populations. J. Exp. Mar. Biol. Ecol., 338: 16–34.

    Article  Google Scholar 

  • Smetacek V, de Baar H J W, Bathmann U V et al. 1997. Ecology and biogeochemistry of the Antarctic Circumpolar Current during austral spring: a summary of Southern Ocean JGOFS cruise ANT X/6 of RV Polarstern. Deep — Sea Res. Pt. II., 44: 1–21.

    Article  Google Scholar 

  • Smetacek V, Klaasb C, Menden-Deuerc S, Rynearsonc T A. 2002. Mesoscale distribution of dominant diatom species relative to the hydrographical field along the Antarctic Polar Front. Deep — Sea Res. Pt. II., 49: 3 835–3 848.

    Google Scholar 

  • Smetacek V. 1999. Diatoms and the ocean carbon cycle. Protist, 150: 25–32.

    Article  Google Scholar 

  • Takahashi T, Sutherland S C, Wanninkhof R et al. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep — Sea Res. Pt. II., 56: 554–577.

    Article  Google Scholar 

  • Takeda S. 1998. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature, 393: 774–777.

    Article  Google Scholar 

  • Tréguer P, Nelson M D, Van Bennekom A J et al. 1995. The silica balance in the world ocean: a reestimate. Science, 268: 375–379.

    Article  Google Scholar 

  • Tréguer P, Jacques G. 1992. Dynamics of nutrients and phytoplankton, and fluxes of carbon, nitrogen and silicon in the Antarctic Ocean. Polar Biol., 12: 149–162.

    Article  Google Scholar 

  • Tremblay J E, Lucas M I, Kattner G et al. 2002. Significance of the Polar Frontal Zone for large-sized diatoms and new production during summer in the Atlantic sector of the Southern Ocean. Deep-Sea Res. Part II., 49: 3 793–3 811.

    Google Scholar 

  • Urban-Rich J, Dagg M, Peterson J. 2001. Copepod grazing on phytoplankton in the Pacific sector of the Antarctic Polar Front. Deep-Sea Res. Part II., 48: 4 223–4 246.

    Article  Google Scholar 

  • Utermöhl H. 1958. Zur vervollkommnung der quantitativen methodik. Mitteilungen der Internationale Vereinigung für Teoretische und Angewandte Limnologie, 9: 1–38.

    Google Scholar 

  • Vaillancourt R D, Marrya J, Sekib M P et al. 2003. Impact of a cyclonic eddy on phytoplankton community structure and photosynthetic competency in the subtropical North Pacific Ocean. Deep — Sea Res. Pt. I., 50: 829–847.

    Article  Google Scholar 

  • Wright S W W, Thomas D P, Marchant H J et al. 1996. Analysis of phytoplankton of the Australian sector of the Southern Ocean: comparisons of microscopy and size frequency data with interpretations of pigment HPLC data using the ‘CHEMTAX’ matrix factorisation program. Mar. Ecol. Prog. Ser., 144: 285–298.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan Rahul.

Additional information

Supported by the Ministry of Earth Science (MoES), New Delhi, India and is one of the ongoing projects in National Centre for Antarctic and Ocean Research (NCAOR) (No. 36/2012)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shramik, P., Rahul, M., Suhas, S. et al. Phytoplankton abundance and community structure in the Antarctic polar frontal region during austral summer of 2009. Chin. J. Ocean. Limnol. 31, 21–30 (2013). https://doi.org/10.1007/s00343-013-1309-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-013-1309-x

Keyword

Navigation