Abstract
Two-photon polymerization (TPP) technologies commonly rely on femtosecond lasers such as Ti:sapphire which limits their accessibility due to high costs and complexities. Recently, multiple reports showed TPP under near-infrared irradiation which enables the use of alternative light sources such as Neodymium-doped lasers known to be affordable and efficient for a nanosecond and picosecond pulsed generation. 4,4′-Bis(dimethyl-amino) benzophenone or Michler’s ketone (MK), one of the photoinitiators commonly used for photopolymerization under UV irradiation, also shows an absorption band in the visible region which allows for two-photon polymerization at the fundamental wavelength of Neodymium-doped lasers at 1064 nm. In this report, we investigated the two-photon absorption (TPA) of MK in contrast with Irgacure-784 and Indane-1,3-dione, reported to also be promising photoinitiators for the same TPP process. Among them, MK showed a large TPA cross-section measured via the nonlinear transmission method and Z-scan technique with Q-switched Nd:YAG nanosecond pulse laser at 1064 nm, demonstrating MK as a promising photoinitiator for the low-cost two-photon polymerization.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
T. Andrea, D. Johannes, T. Simon, G. Harald, H. Alois, Light: Adv. Manuf. 2, 20–30 (2021). https://doi.org/10.37188/lam.2021.002
D. Yang, L. Liu, Q. Gong, Y. Li, Macromol. Rapid Commun. 40, 1900041 (2019). https://doi.org/10.1002/marc.201900041
A. Urrios, C. Parra-Cabrera, N. Bhattacharjee, A.M. Gonzalez-Suarez, L.G. Rigat-Brugarolas, U. Nallapatti, J. Samitier, C.A. DeForest, F. Posas, J.L. Garcia-Cordero, A. Folch, Lab Chip 16, 2287–2294 (2016). https://doi.org/10.1039/c6lc00153j
J.F. Xing, M.L. Zheng, X.M. Duan, Chem. Soc. Rev. 44, 5031–5039 (2015). https://doi.org/10.1039/c5cs00278h
X.X. Shen, X.Q. Yu, X.L. Yang, L.Z. Cai, Y.R. Wang, G.Y. Dong, X.F. Meng, X.F. Xu, J. Opt. A: Pure Appl. Opt. 8, 672–676 (2006). https://doi.org/10.1088/1464-4258/8/8/008
E. Stankevičius, E. Daugnoraitė, A. Selskis, S. Juodkazis, G. Račiukaitis, Opt. Express 25, 4819–4830 (2017). https://doi.org/10.1364/OE.25.004819
D. Perevoznik, R. Nazir, R. Kiyan, K. Kurselis, B. Koszarna, D.T. Gryko, B.N. Chichkov, Opt. Express 27, 25119–25125 (2019). https://doi.org/10.1364/OE.27.025119
B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.Y.S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S.R. Marder, J.W. Perry, Nature 398, 51–54 (1999). https://doi.org/10.1038/17989
K.-S. Lee, D.-Y. Yang, S.H. Park, R.H. Kim, Polym. Adv. Technol. 17, 72–82 (2006). https://doi.org/10.1002/pat.664
M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, S. Juodkazis, Opt. Express 18, 10209–10221 (2010). https://doi.org/10.1364/OE.18.010209
T. Olivier, F. Billard, H. Akhouayri, Opt. Express 12, 1377–1382 (2004). https://doi.org/10.1364/OPEX.12.001377
M. Degirmenci, A. Onen, Y. Yagci, S.P. Pappas, Polym. Bull. 46, 443–449 (2001). https://doi.org/10.1007/s002890170030
D. Sabol, M.R. Gleeson, S. Liu, J.T. Sheridan, J. Appl. Phys. 107, 053113 (2010). https://doi.org/10.1063/1.3276173
F. Dumur, Eur. Polymer J. 143, 110178 (2021). https://doi.org/10.1016/j.eurpolymj.2020.110178
M. Sheik-Bahae, A.A. Said, T. Wei, D.J. Hagan, E.W.V. Stryland, IEEE J. Quantum Electron. 26, 760–769 (1990). https://doi.org/10.1109/3.53394
K.J. Schafer, J.M. Hales, M. Balu, K.D. Belfield, E.W. Van Stryland, D.J. Hagan, J. Photochem. Photobiol. A 162, 497–502 (2004). https://doi.org/10.1016/S1010-6030(03)00394-0
A. Ajami, W. Husinsky, R. Liska, N. Pucher, J. Opt. Soc. Am. B 27, 2290–2297 (2010). https://doi.org/10.1364/JOSAB.27.002290
Y. Wen, X. Jiang, J. Yin, Prog. Org. Coat. 66(1), 65–72 (2009). https://doi.org/10.1016/j.porgcoat.2009.06.003
Acknowledgements
This research project is supported by Mahidol University (Basic Research Fund: fiscal year 2021).
Author information
Authors and Affiliations
Contributions
Suwat Romphosri wrote the main manuscript text and prepared the figures. Phyu Sin Oo wrote a certain small portion of the manuscript. Suwat Romphosri, Pornpawee Karanyasopon, Rakchart Traiphhol, Tanant Waritanant, helped with the ideation and methodology. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Romphosri, S., Oo, P.S., Karanyasopon, P. et al. Two-photon absorption cross-section investigation of visible-light photoinitiators under Q-switched Nd:YAG nanosecond pulse laser at 1064 nm. Appl. Phys. B 128, 164 (2022). https://doi.org/10.1007/s00340-022-07888-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00340-022-07888-7