Skip to main content
Log in

Generation of V-point polarization singularity array by Dammann gratings

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Dammann gratings conceived earlier are designed using iterative procedures to produce equal intensity light spots. In this paper, we show a novel method to design a Dammann grating by solving optimization problem. We solve the optimization problem by a grid search method with resolution determined by fabrication capabilities. The grid-search method utilizes a cost function to find the phase transition points in the unit cell of a Dammann grating, thereby maximizing the throughput. Since the goal in previously designed gratings is to produce required intensity pattern, other parameters of light such as phase and polarization were not expected to maintain any structure in the diffraction pattern and were considered as free parameters during design. We observe that the element preserves the topological features of the incident light in each of its diffracted orders. We show that Dammann grating when illuminated by a V-point polarization singularity of different Poincaré–Hopf index values, produces multiple beam-lets each containing same polarization distribution as that of the incident V-point. The experimentally obtained array structures are in concordance with the simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Vyas, P. Senthilkumaran, Interferometric optical vortex array generator. Appl. Opt. 46(15), 2893 (2007)

    Article  ADS  Google Scholar 

  2. J. Masajada, B. Dubik, Optical vortex generation by three plane wave interference. Opt. Commun. 198(1–3), 21 (2001)

    Article  ADS  Google Scholar 

  3. S.K. Pal, P. Senthilkumaran, Cultivation of lemon fields. Opt. Express 24(24), 28008 (2016)

    Article  ADS  Google Scholar 

  4. Ruchi, S.K. Pal, P. Senthilkumaran, Generation of V-point polarization singularity lattices. Opt. Express 25(16), 19326 (2017)

    Article  ADS  Google Scholar 

  5. R.K. Singh, A.M. Sharma, P. Senthilkumaran, Vortex array embedded in a partially coherent beam. Opt. Lett. 40(12), 2751 (2015)

    Article  ADS  Google Scholar 

  6. Y. Chen, S.A. Ponomarenko, Y. Cai, Experimental generation of optical coherence lattices. Appl. Phys. Lett. 109(6), 061107 (2016)

    Article  ADS  Google Scholar 

  7. L. Ma, S.A. Ponomarenko, Optical coherence gratings and lattices. Opt. Lett. 39(23), 6656 (2014)

    Article  ADS  Google Scholar 

  8. Y. Wang, Y. Xu, X. Feng, P. Zhao, F. Liu, K. Cui, W. Zhang, Y. Huang, Optical lattice induced by angular momentum and polygonal plasmonic mode. Opt. Lett. 41(7), 1478 (2016)

    Article  ADS  Google Scholar 

  9. J. Hickmann, E. Fonseca, W. Soares, S. Chávez-Cerda, Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Phys. Rev. Lett. 105(5), 53904 (2010)

    Article  ADS  Google Scholar 

  10. L. Yongxin, T. Hua, P. Jixiong, L. Baida, Detecting the topological charge of vortex beams using an annular triangle aperture. Opt. Laser Technol. 43(7), 1233 (2011)

    Article  ADS  Google Scholar 

  11. H. Dammann, K. Görtler, High-efficiency in-line multiple imaging by means of multiple phase holograms. Opt. Commun. 3(5), 312 (1971)

    Article  ADS  Google Scholar 

  12. C. Zhou, L. Liu, Numerical study of Dammann array illuminators. Appl. Opt. 34(26), 5961 (1995)

    Article  ADS  Google Scholar 

  13. R.W. Gerchberg, A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237 (1972)

    Google Scholar 

  14. J.R. Fienup, C.C. Wackerman, Phase retrieval stagnation problems and solutions. J. Opt. Soc. Am. A 3(11), 1897 (1986)

    Article  ADS  Google Scholar 

  15. J.R. Fienup, Phase retrieval algorithms: a personal tour [invited]. Appl. Opt. 52(1), 45 (2012)

    Article  ADS  Google Scholar 

  16. K. Khare, Fourier Optics and Computational Imaging (Wiley, New York, 2015)

    Book  MATH  Google Scholar 

  17. F. Wyrowski, O. Bryngdahl, Iterative Fourier transform algorithm applied to computer holography. J. Opt. Soc. Am. A 5, 1058 (1988)

    Article  ADS  Google Scholar 

  18. P. Senthilkumaran, F. Wyrowski, Phase synthesis in wave-optical engineering: mapping and diffuser-type approaches. J. Mod. Opt. 49, 1831 (2002)

    Article  ADS  MATH  Google Scholar 

  19. P. Senthilkumaran, F. Wyrowski, H. Shimmel, Vortex stagnation problem in iterative Fourier transform algorithms. Opt. Lasers Eng. 43, 43 (2005)

    Article  Google Scholar 

  20. D. Godwin, D. Selviah, C. Carey, J. Midwinter, in 1993 Fourth International Conference on Holographic Systems, Components and Applications (IET, 1993), pp. 147–152

  21. D.C. O’Shea, Reduction of the zero-order intensity in binary Dammann gratings. Appl. Opt. 34(28), 6533 (1995)

    Article  ADS  Google Scholar 

  22. I. Moreno, J.A. Davis, D.M. Cottrell, N. Zhang, X.C. Yuan, Encoding generalized phase functions on Dammann gratings. Opt. Lett. 35(10), 1536 (2010)

    Article  ADS  Google Scholar 

  23. U. Krackhardt, N. Streibl, Design of Dammann-gratings for array generation. Opt. Commun. 74(1–2), 31 (1989)

    Article  ADS  Google Scholar 

  24. H. Dammann, E. Klotz, Coherent optical generation and inspection of two-dimensional periodic structures. Optica Acta Int. J. Opt. 24(4), 505 (1977)

    Article  ADS  Google Scholar 

  25. I. Freund, Polarization singularity indices in Gaussian laser beams. Opt. Commun. 201(4–6), 251 (2002)

    Article  ADS  Google Scholar 

  26. M. Dennis, Polarization singularities in paraxial vector fields: morphology and statistics. Opt. Commun. 213(4–6), 201 (2002)

    Article  ADS  Google Scholar 

  27. Ruchi, P. Senthilkumaran, S.K. Pal, Phase singularities to polarization singularities. Int. J. Opt. 2020, 2812803 (2020)

    Article  Google Scholar 

  28. G. Milione, H.I. Sztul, D.A. Nolan, R.R. Alfano, Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett. 107, 053601 (2011)

    Article  ADS  Google Scholar 

  29. G. Milione, S. Evans, D.A. Nolan, R.R. Alfano, Higher order Pancharatnam–Berry phase and the angular momentum of light. Phys. Rev. Lett. 108, 190401 (2012)

    Article  ADS  Google Scholar 

  30. B.B. Ram, P. Senthilkumaran, Edge enhancement by negative Poincare–Hopf index filters. Opt. Lett. 43(8), 1830 (2018)

    Article  ADS  Google Scholar 

  31. B.S.B. Ram, P. Senthilkumaran, A. Sharma, Polarization-based spatial filtering for directional and nondirectional edge enhancement using an S-waveplate. Appl. Opt. 56(11), 3171 (2017)

    Article  ADS  Google Scholar 

  32. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, G. Leuchs, Focusing light to a tighter spot. Opt. Commun. 179(1), 1 (2000)

    Article  ADS  Google Scholar 

  33. P. Lochab, P. Senthilkumaran, K. Khare, Designer vector beams maintaining a robust intensity profile on propagation through turbulence. Phys. Rev. A 98(2), 023831 (2018)

    Article  ADS  Google Scholar 

  34. P. Lochab, P. Senthilkumaran, K. Khare, Robust laser beam engineering using polarization and angular momentum diversity. Opt. Express 25(15), 17524 (2017)

    Article  ADS  Google Scholar 

  35. A. Rubano, F. Cardano, B. Piccirillo, L. Marrucci, Q-plate technology: a progress review [Invited]. J. Opt. Soc. Am. B 36(5), D70 (2019)

    Article  Google Scholar 

  36. F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. Lisio, E. Santamato, Polarization pattern of vector vortex beams generated by q-plates with different topological charges. Appl. Opt. 51, C1 (2012)

    Article  Google Scholar 

  37. S. Bansal, S.K. Pal, P. Senthilkumaran, Use of q-plate as a coupler. Appl. Opt. 59(16), 4933 (2020)

    Article  ADS  Google Scholar 

  38. Y.W. Huang, N.A. Rubin, A. Ambrosio, Z. Shi, R.C. Devlin, C.W. Qiu, F. Capasso, Versatile total angular momentum generation using cascaded J-plates. Opt. Express 27(5), 7469 (2019)

    Article  ADS  Google Scholar 

  39. Y. Bao, J. Ni, C.W. Qiu, A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Adv. Mater. 32(6), 1905659 (2020)

    Article  Google Scholar 

  40. J. Xin, X. Lou, Z. Zhou, M. Dong, L. Zhu, Generation of polarization vortex beams by segmented quarter-wave plates. Chin. Opt. Lett. 14(7), 070501 (2016)

    Article  Google Scholar 

  41. J. Mendoza-Hernández, M.F. Ferrer-Garcia, J.A. Rojas-Santana, D. Lopez-Mago, Cylindrical vector beam generator using a two-element interferometer. Opt. Express 27(22), 31810 (2019)

    Article  ADS  Google Scholar 

  42. S. Fu, C. Gao, Y. Shi, K. Dai, L. Zhong, S. Zhang, Generating polarization vortices by using helical beams and a Twyman Green interferometer. Opt. Lett. 40(8), 1775 (2015)

    Article  ADS  Google Scholar 

  43. Z. Chen, T. Zeng, B. Qian, J. Ding, Complete shaping of optical vector beams. Opt. Express 23(14), 17701 (2015)

    Article  ADS  Google Scholar 

  44. S. Fu, C. Gao, T. Wang, Y. Zhai, C. Yin, Anisotropic polarization modulation for the production of arbitrary Poincaré beams. JOSA B 35(1), 1 (2018)

    Article  ADS  Google Scholar 

  45. X. Ling, X. Yi, Z. Dai, Y. Wang, L. Chen, Characterization and manipulation of full Poincaré beams on the hybrid Poincaré sphere. J. Opt. Soc. Am. B 33(11), 2172 (2016)

    Article  ADS  Google Scholar 

  46. P. Li, Y. Zhang, S. Liu, C. Ma, L. Han, H. Cheng, J. Zhao, Generation of perfect vectorial vortex beams. Opt. Lett. 41(10), 2205 (2016)

    Article  ADS  Google Scholar 

  47. X.L. Wang, Y. Li, J. Chen, C.S. Guo, J. Ding, H.T. Wang, A new type of vector fields with hybrid states of polarization. Opt. Express 18(10), 10786 (2010)

    Article  ADS  Google Scholar 

  48. S. Liu, S. Qi, Y. Zhang, P. Li, D. Wu, L. Han, J. Zhao, Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude. Photon. Res. 6(4), 228 (2018)

    Article  Google Scholar 

  49. M. Meier, V. Romano, T. Feurer, Material processing with pulsed radially and azimuthally polarized laser radiation. Appl. Phys. A 86(3), 329 (2007)

    Article  ADS  Google Scholar 

  50. N. Bhebhe, P.A. Williams, C. Rosales-Guzmán, V. Rodriguez-Fajardo, A. Forbes, A vector holographic optical trap. Sci. Rep. 8(1), 1 (2018)

    Article  Google Scholar 

  51. J. Fang, Z. Xie, T. Lei, C. Min, L. Du, Z. Li, X. Yuan, Spin-dependent optical geometric transformation for cylindrical vector beam multiplexing communication. ACS Photon. 5(9), 3478 (2018)

    Article  Google Scholar 

  52. J. Jahns, M.M. Downs, M. Prise, N. Streibi, S.J. Walker, Dammann gratings for laser beam shaping. Opt. Eng. 28(12), 281267 (1989)

    Article  ADS  Google Scholar 

  53. H. Zou, W.H. Zhu, J.F. Gong, K.X. Zhang, H.Y. Xie, in 2010 Symposium on Photonics and Optoelectronics (IEEE, 2010), pp. 1–4

  54. J. Turunen, A. Vasara, J. Westerholm, A. Salin, Stripe-geometry two-dimensional Dammann gratings. Opt. Commun. 74(3), 245 (1989)

    Article  ADS  Google Scholar 

  55. A. Vasara, M.R. Taghizadeh, J. Turunen, J. Westerholm, E. Noponen, H. Ichikawa, J.M. Miller, T. Jaakkola, S. Kuisma, Binary surface-relief gratings for array illumination in digital optics. Appl. Opt. 31(17), 3320 (1992)

    Article  ADS  Google Scholar 

  56. W.R.U. Killat, G. Rabe, Binary phase grating for star couples with a high splitting ratio. Fiber Integr. Opt. 4(12), 159–167 (1982)

    Article  ADS  Google Scholar 

  57. R.L. Morrison, Symmetries that simplify the design of spot array phase gratings. JOSA A 9(3), 464 (1992)

    Article  ADS  Google Scholar 

  58. R.L. Morrison, S.L. Walker, T.J. Cloonan, Beam array generation and holographic interconnections in a free-space optical switching network. Appl. Opt. 32(14), 2512 (1993)

    Article  ADS  Google Scholar 

  59. H. Pang, A. Cao, W. Liu, L. Shi, Q. Deng, Alternative design of Dammann grating for beam splitting with adjustable zero-order light intensity. IEEE Photon. J. 11(2), 1 (2019)

    Article  Google Scholar 

  60. Q. Bi, C. Zhou, J. Zheng, W. Jia, X. Xie, Z. Lin, P.S. Chung, Inverse symmetric Dammann gratings. Opt. Commun. 282(5), 742 (2009)

    Article  ADS  Google Scholar 

  61. R. Dharmavarapu, S. Bhattacharya, S. Juodkazis, GDOESII: software for design of diffractive optical elements and phase mask conversion to GDSII lithography files. SoftwareX 9, 126 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Defence Research and Development Organisation [DFTM/03/3203/P/11/JATC-2PQP-11].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil K. Gangwar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, J., Gangwar, K.K., Ruchi et al. Generation of V-point polarization singularity array by Dammann gratings. Appl. Phys. B 128, 108 (2022). https://doi.org/10.1007/s00340-022-07830-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07830-x

Navigation