Skip to main content
Log in

Optimization of phase-only holograms calculated with scaled diffraction calculation through deep neural networks

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Computer-generated holograms (CGHs) are used in holographic three-dimensional (3D) displays and holographic projections. The quality of the reconstructed images using phase-only CGHs is degraded because the amplitude of the reconstructed image is difficult to control. Iterative optimization methods such as the Gerchberg–Saxton (GS) algorithm are one option for improving image quality. They optimize CGHs in an iterative fashion to obtain a higher image quality. However, such iterative computation is time-consuming, and the improvement in image quality is often stagnant. Recently, deep learning-based hologram computation has been proposed. Deep neural networks directly infer CGHs from input image data. However, it is limited to reconstructing images that are the same size as the hologram. In this study, we use deep learning to optimize phase-only CGHs generated using scaled diffraction computations and the random phase-free method. By combining the random phase-free method with the scaled diffraction computation, it is possible to handle a zoomable reconstructed image larger than the hologram. In comparison to the GS algorithm, the proposed method optimizes both high quality and speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, Greenwood Village, 2005)

    Google Scholar 

  2. T.-C. Poon, Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, Berlin, 2006)

    Book  Google Scholar 

  3. D. Binder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Ottevaere, C. Schretter, P. Schelkens, Signal Process. Image Commun. 70, 114–213 (2019)

    Article  Google Scholar 

  4. K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, K. Yamamoto, Nat. Commun. 7, 12954 (2016)

    Article  ADS  Google Scholar 

  5. K. Matsushima, N. Sonobe, Appl. Opt. 57, A150–A156 (2018)

    Article  ADS  Google Scholar 

  6. L. Wei, Y. Sakamoto, Appl. Opt. 58, A258–A266 (2019)

    Article  ADS  Google Scholar 

  7. Z. He, X. Sui, G. Jin, L. Cao, Appl. Opt. 58, A74–A81 (2019)

    Article  ADS  Google Scholar 

  8. E. Buckley, J. Disp. Tech. 7, 135–140 (2011)

    Article  Google Scholar 

  9. M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, A. Kolodziejczyk, Opt. Express 20, 25130–25136 (2012)

    Article  ADS  Google Scholar 

  10. M. Makowski, Opt. Express 21, 29205–29216 (2013)

    Article  ADS  Google Scholar 

  11. T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, T. Ito, Opt. Express 21, 25285–25290 (2013)

    Article  ADS  Google Scholar 

  12. M. Chlipała, T. Kozacki, H.-J. Yeom, J. Martinez-Carranza, R. Kukołowicz, J. Kim, J.-H. Yang, J.H. Choi, J.-E. Pi, C.-S. Hwang, Opt. Lett. 46, 4956–4959 (2021)

    Article  ADS  Google Scholar 

  13. J. Amako, H. Miura, T. Sonehara, Appl. Opt. 34, 3165–3171 (1995)

    Article  ADS  Google Scholar 

  14. P.W.M. Tsang, Y.-T. Chow, T.-C. Poon, Opt. Express 22, 25208–25214 (2014)

    Article  ADS  Google Scholar 

  15. J.-P. Liu, M.-H. Wu, P.W.M. Tsang, Opt. Express 28, 24526–24537 (2020)

    Article  ADS  Google Scholar 

  16. C.K. Hsueh, A.A. Sawchuk, Computer-generated double-phase holograms. Appl. Opt. 17, 3874–3883 (1978)

    Article  ADS  Google Scholar 

  17. O. Mendoza-Yero, G. Mínguez-Vega, J. Lancis, Opt. Lett. 39, 1740–1743 (2014)

    Article  ADS  Google Scholar 

  18. X. Sui, Z. He, G. Jin, D. Chu, L. Cao, Opt. Express 29, 2597–2612 (2021)

    Article  ADS  Google Scholar 

  19. T. Shimobaba, T. Takahashi, Y. Yamamoto, I. Hoshi, A. Shiraki, T. Kakue, T. Ito, J. Opt. 22, 045703 (2020)

    Article  ADS  Google Scholar 

  20. R.W. Gerchberg, Optik 35, 237–246 (1972)

    Google Scholar 

  21. M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikula, Opt. Eng. 44, 125805 (2005)

    Article  ADS  Google Scholar 

  22. C. Chang, J. Xia, L. Yang, W. Lei, Z. Yang, J. Chen, Appl. Opt. 54, 6994–7001 (2015)

    Article  ADS  Google Scholar 

  23. R. Horisaki, R. Takagi, J. Tanida, Appl. Opt. 57, 3859–3863 (2018)

    Article  ADS  Google Scholar 

  24. J. Wu, K. Liu, X. Sui, L. Cao, Opt. Lett. 46, 2908–2911 (2021)

    Article  ADS  Google Scholar 

  25. J.-W. Kang, B.-S. Park, J.-K. Kim, D.-W. Kim, Y.-H. Seo, Appl. Opt. 60, 7391–7399 (2021)

    Article  ADS  Google Scholar 

  26. L. Shi, B. Li, C. Kim, P. Kellnhofer, W. Matusik, Nature 591, 234–239 (2021)

    Article  ADS  Google Scholar 

  27. T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, T. Ito, J. Opt. 15, 075302 (2013)

    Article  Google Scholar 

  28. T. Shimobaba, T. Ito, Opt. Express 23, 9549–9554 (2015)

    Article  ADS  Google Scholar 

  29. T. Shimobaba, T. Kakue, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, M. Sano, M. Oikawa, T. Sugie, T. Ito, Opt. Express 23, 17269–17274 (2015)

    Article  ADS  Google Scholar 

  30. T. Shimobaba, T. Kakue, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, M. Sano, M. Oikawa, T. Sugie, T. Ito, Opt. Commun. 355, 596–601 (2015)

    Article  ADS  Google Scholar 

  31. Y. Nagahama, T. Shimobaba, T. Kakue, N. Masuda, T. Ito, Appl. Opt. 56, F61–F66 (2017)

    Article  Google Scholar 

  32. Y. Nagahama, T. Shimobaba, T. Kakue, Y. Takaki, T. Ito, Appl. Opt. 58, 2146–2151 (2019)

    Article  ADS  Google Scholar 

  33. O. Ronneberger, P. Fischer, T. Brox, Springer LNCS 9351, 234–241 (2015)

    Google Scholar 

  34. X. Li, J. Liu, J. Jia, Y. Pan, Y. Wang, Opt. Express 21, 20577–20587 (2013)

    Article  ADS  Google Scholar 

  35. R.J. Collier, C.B. Burckhardt, L.H. Lin, Optical Holography (Academic Press, London, 1971)

    Google Scholar 

  36. I. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu-El-Haija, A. Kuznetsova, H. Rom, J. Uijlings, S. Popov, S. Kamali, M. Malloci, J. Pont-Tuset, A. Veit, S. Belongie, V. Gomes, A. Gupta, C. Sun, G. Chechik, D. Cai, Z. Feng, D. Narayanan, K. Murphy. https://github.com/openimages.

  37. A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov, M. Malloci, A. Kolesnikov, T. Duerig, V. Ferrari, Int. J. Comput. Vis. 128, 1956–1981 (2020)

    Article  Google Scholar 

  38. P.W.M. Tsang, T.-C. Poon, Opt. Express 21, 23680–23686 (2013)

    Article  ADS  Google Scholar 

  39. J.-Y. Zhu, T. Park, P. Isola, A.A. Efros: In Proceedings of the IEEE international conference on computer vision, pp. 2223–2232 (2017).

  40. Y. Wu, J. Wang, C. Chen, C.-J. Liu, F.G.-M. Jin, N. Chen, Adaptive weighted Gerchberg–Saxton algorithm for generation of phase-only hologram with artifacts suppression. Opt. Express 29, 1412–1427 (2021)

    Article  ADS  Google Scholar 

  41. P.W.M. Tsang, Y.-T. Chow, T.-C. Poon, Generation of phase-only Fresnel hologram based on down-sampling. Opt. Express 22, 25208–25214 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers 19H04132 and 19H1097, the joint JSPS-FWO scientific cooperation program (VS07820N) and the Research Foundation—Flanders (FWO), Junior postdoctoral fellowship (12ZQ220N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyoshi Shimobaba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishii, Y., Shimobaba, T., Blinder, D. et al. Optimization of phase-only holograms calculated with scaled diffraction calculation through deep neural networks. Appl. Phys. B 128, 22 (2022). https://doi.org/10.1007/s00340-022-07753-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07753-7

Navigation