Skip to main content
Log in

Multipass cell design with the random walk and gradient descent optimization algorithms

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An automated approach is presented for optimizing the multipass cell (MPC) design with dense patterns in this paper. First, a strategy based on the random walk (RW) algorithm is implemented for global exploration to determine the parameters of the target MPC configuration and accelerate the design process. Second, the gradient descent (GD) algorithm is performed for local exploitation to optimize the re-entrant condition in a fast and automatic way. In addition, we apply the clustering method to identify the desired spot patterns with specific properties automatically. Finally, the proposed algorithms are tested in the optimization of two types of densely patterned MPC under the re-entrant condition. The results presented in this paper clearly show that the proposed approach is effective and efficient in optimizing the MPC design automatically and can be further utilized in more complex optical configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Dong, Y. Yu, C. Li, S. So, F.K. Tittel, Opt. Express 23(15), 19821 (2015)

    Article  ADS  Google Scholar 

  2. W. Ren, L. Luo, F.K. Tittel, Sens. Actuators B Chem. 221, 1062 (2015)

    Article  Google Scholar 

  3. L. Dong, C. Li, N.P. Sanchez, A.K. Gluszek, R.J. Griffin, F.K. Tittel, Appl. Phys. Lett. 108(1), 011106 (2016)

    Article  ADS  Google Scholar 

  4. C. Li, L. Dong, C. Zheng, F.K. Tittel, Sens. Actuators B Chem. 232, 188 (2016)

    Article  Google Scholar 

  5. R. Ghorbani, F.M. Schmidt, Opt. Express 25(11), 12743 (2017)

    Article  ADS  Google Scholar 

  6. R. Cui, L. Dong, H. Wu, S. Li, L. Zhang, W. Ma, W. Yin, L. Xiao, S. Jia, F.K. Tittel, Opt. Express 26(19), 24318 (2018)

    Article  ADS  Google Scholar 

  7. Y. He, Y. Ma, Y. Tong, X. Yu, F.K. Tittel, Opt. Lett. 44(8), 1904 (2019)

    Article  ADS  Google Scholar 

  8. X. Qiu, Y. Wei, J. Li, E. Zhang, N. Li, C. Li, J. Wei, Opt. Laser Technol. 121, 105832 (2020)

    Article  Google Scholar 

  9. M. Raza, L. Ma, C. Yao, M. Yang, Z. Wang, Q. Wang, R. Kan, W. Ren, Opt. Laser Technol. 130, 106344 (2020)

    Article  Google Scholar 

  10. J.U. White, JOSA 32(5), 285 (1942)

    Article  ADS  Google Scholar 

  11. H. Bernstein, G. Herzberg, J. Chem. Phys. 16(1), 30 (1948)

    Article  ADS  Google Scholar 

  12. H. Pickett, G. Bradley, H. Strauss, Appl. Opt. 9(10), 2397 (1970)

    Article  ADS  Google Scholar 

  13. D. Herriott, H. Kogelnik, R. Kompfner, Appl. Opt. 3(4), 523 (1964)

    Article  ADS  Google Scholar 

  14. D.R. Herriott, H.J. Schulte, Appl. Opt. 4(8), 883 (1965)

    Article  ADS  Google Scholar 

  15. J.B. McManus, M.S. Zahniser, D.D. Nelson, Appl. Opt. 50(4), A74 (2011)

    Article  ADS  Google Scholar 

  16. J.B. McManus, P.L. Kebabian, M. Zahniser, Appl. Opt. 34(18), 3336 (1995)

    Article  ADS  Google Scholar 

  17. K. Krzempek, M. Jahjah, R. Lewicki, P. Stefański, S. So, D. Thomazy, F.K. Tittel, Appl. Phys. B 112(4), 461 (2013)

    Article  ADS  Google Scholar 

  18. K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, X. Gao, Sens. Actuators B Chem. 220, 1000 (2015)

    Article  Google Scholar 

  19. L. Shao, B. Fang, F. Zheng, X. Qiu, Q. He, J. Wei, C. Li, W. Zhao, Spectrochim. Acta. Part. A Mol. Biomol. Spectrosc. 222, 117118 (2019)

    Article  Google Scholar 

  20. R. Cui, L. Dong, H. Wu, W. Ma, L. Xiao, S. Jia, W. Chen, F.K. Tittel, Anal. Chem. 92(19), 13034 (2020)

    Article  Google Scholar 

  21. T. Wei, H. Wu, L. Dong, R. Cui, S. Jia, Opt. Express 29(8), 12357 (2021)

    Article  ADS  Google Scholar 

  22. R. Kong, T. Sun, P. Liu, X. Zhou, Appl. Opt. 59(6), 1545 (2020)

    Article  ADS  Google Scholar 

  23. R. Cui, L. Dong, H. Wu, W. Chen, F.K. Tittel, Appl. Phys. Lett. 116(9), 091103 (2020)

    Article  ADS  Google Scholar 

  24. Y.N. Cao, Z. Xu, X. Tian, G. Cheng, C.J. Liu, Y.J. Zhang, Opt. Laser Technol. 139, 106958 (2021)

    Article  Google Scholar 

  25. H. Chen, C. Chen, Y. Wang, H. Piao, P. Wang, IEEE Trans. Instrum. Meas. 70, 1 (2021)

    Google Scholar 

  26. J. Liu, Y. Chen, L. Xu, R. Kong, P. Liu, X. Zhou, Opt. Express 29(13), 20250 (2021)

    Article  ADS  Google Scholar 

  27. R. Cui, L. Dong, H. Wu, S. Li, X. Yin, L. Zhang, W. Ma, W. Yin, F.K. Tittel, Opt. Lett. 44(5), 1108 (2019)

    Article  ADS  Google Scholar 

  28. A.J.E.M. Janssen, J.S.H. Van Leeuwaarden, Ann. Appl. Prob. 17(2), 421 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Foundation of the High-Level Scholars of Beijing Normal University (Grant number 10100-312232102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, R., Liu, P. & Zhou, X. Multipass cell design with the random walk and gradient descent optimization algorithms. Appl. Phys. B 127, 132 (2021). https://doi.org/10.1007/s00340-021-07679-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07679-6

Navigation