Skip to main content
Log in

Efficient fiber in-line single photon source based on colloidal single quantum dots on an optical nanofiber

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrate a fiber in-line single photon source based on a hybrid system of colloidal single quantum dots deposited on an optical nanofiber and cooled down to cryogenic temperature (3.7 K). We show that a charged state (trion) of the single quantum dot exhibits a photo-stable emission of single photons with high quantum efficiency, narrow linewidth (3 meV FWHM) and fast decay time (\(10.0\pm 0.5\) ns). The single photons are efficiently coupled to the guided modes of the nanofiber and eventually to a single mode optical fiber. The brightness (efficiency) of the single photon source is estimated to be \(16\pm 2\%\) with a maximum photon count rate of \(1.6\pm \,0.2\) MHz and a high single photon purity (\(g^2(0)=0.11\pm 0.02\)). The device can be easily integrated to the fiber networks paving the way for potential applications in quantum networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H.J. Kimble, The quantum internet. Nature 453, 1023 (2008)

    Article  ADS  Google Scholar 

  2. J. O’Brien, A. Furusawa, J. Vuckovic, Photonic quantum technologies. Nat. Photon 3, 687 (2009)

    Article  ADS  Google Scholar 

  3. I. Aharonovich, D. Englund, M. Toth, Solid-state single-photon emitters. Nat. Photonics 10, 631 (2016)

    Article  ADS  Google Scholar 

  4. P. Senellart, G. Solomon, A. White, High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026 (2017)

    Article  ADS  Google Scholar 

  5. P. Michler, A. Kiraz, C. Becher, W. Schoenfeld, P. Petroff, L. Zhang, E. Hu, A. Imamoglu, A quantum dot single-photon turnstile device. Science 290, 2282 (2000)

    Article  ADS  Google Scholar 

  6. Y.-S. Park, J. Lim, V.I. Klimov, Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. Nat. Mater. 18, 249 (2019)

    Article  ADS  Google Scholar 

  7. X. Lin, X. Dai, C. Pu, Y. Deng, Y. Niu, L. Tong, W. Fang, Y. Jin, X. Peng, Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nat. Commun. 8, 1132 (2017)

    Article  ADS  Google Scholar 

  8. M. Manceau, S. Vezzoli, Q. Glorieux, F. Pisanello, E. Giacobino, L. Carbone, M. De Vittorio, A. Bramati, Effect of charging on CdSe/CdS dots-in-rods single-photon emission. Phys. Rev. B 90, 035311 (2014)

    Article  ADS  Google Scholar 

  9. S. Vezzoli, M. Manceau, G. Lemenager, Q. Glorieux, E. Giacobino, L. Carbone, M. De Vittorio, A. Bramati, Exciton fine straucture of CdSe/CdS nanocrystals determined by polarization microscopy at room temperature. ACS Nano 9, 7992 (2015)

    Article  Google Scholar 

  10. A. Sipahigil, R.E. Evans, D.D. Sukachev, M.J. Burek, J. Borregaard, M.K. Bhaskar, C.T. Nguyen, J.L. Pacheco, H.A. Atikian, C. Meuwly, R.M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Loncar, M.D. Lukin, An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847 (2016)

    Article  ADS  Google Scholar 

  11. R.S. Daveau, K.C. Balram, T. Pregnolato, J. Liu, E.H. Lee, J.D. Song, V. Verma, R. Mirin, S.W. Nam, L. Midolo, S. Stobbe, K. Srinivasan, P. Lodahl, Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide. Optica 4, 178 (2017)

    Article  ADS  Google Scholar 

  12. T.B. Hoang, G.M. Akselrod, M.H. Mikkelsen, Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett. 16, 270 (2016)

    Article  ADS  Google Scholar 

  13. C.-M. Lee, M.A. Buyukkaya, S. Aghaeimeibodi, A. Karasahin, C.J.K. Richardson, E. Waks, A fiber-integrated nanobeam single photon source emitting at telecom wavelengths. Appl. Phys. Lett. 114, 171101 (2019)

    Article  ADS  Google Scholar 

  14. F.L. Kien, S.D. Gupta, V.I. Balykin, K. Hakuta, Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes. Phys. Rev. A 72, 032509 (2005)

    Article  ADS  Google Scholar 

  15. K.P. Nayak, M. Sadgrove, R. Yalla, F.L. Kien, K. Hakuta, Nanofiber quantum photonics. J. Opt. 20, 073001 (2018)

    Article  ADS  Google Scholar 

  16. K.P. Nayak, P.N. Melentiev, M. Morinaga, F.L. Kien, V.I. Balykin, K. Hakuta, Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence. Opt. Express 15, 5431 (2007)

    Article  ADS  Google Scholar 

  17. K.P. Nayak, J. Wang, J. Keloth, Real-time observation of single atoms trapped and interfaced to a nanofiber cavity. Phys. Rev. Lett. 123, 213602 (2019)

    Article  ADS  Google Scholar 

  18. R. Yalla, K.P. Nayak, K. Hakuta, Fluorescence photon measurements from single quantum dots on an optical nanofiber. Opt. Express 20, 2932 (2012)

    Article  ADS  Google Scholar 

  19. M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, S. Takeuchi, Highly efficient coupling of photons from nanoemitters into single-mode optical fibers. Nano Lett. 11, 4362 (2011)

    Article  ADS  Google Scholar 

  20. L. Liebermeister, F. Petersen, A.V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A.W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, M. Weber, Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center. Appl. Phys. Lett. 104, 031101 (2014)

    Article  ADS  Google Scholar 

  21. M. Fujiwara, H.-Q. Zhao, T. Noda, K. Ikeda, H. Sumiya, S. Takeuchi, Ultrathin fiber-taper coupling with nitrogen vacancy centers in nanodiamonds at cryogenic temperatures. Opt. Lett. 40, 5702 (2015)

    Article  ADS  Google Scholar 

  22. A.W. Schell, H. Takashima, T.T. Tran, I. Aharonovich, S. Takeuchi, Coupling quantum emitters in 2D materials with tapered fibers. ACS Photonics 4, 761–767 (2017)

    Article  Google Scholar 

  23. S.M. Skoff, D. Papencordt, H. Schauffert, B.C. Bayer, A. Rauschenbeutel, Optical-nanofiber-based interface for single molecules. Phys. Rev. A 97, 043839 (2018)

    Article  ADS  Google Scholar 

  24. R. Yalla, F.L. Kien, M. Morinaga, K. Hakuta, Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber. Phys. Rev. Lett. 109, 063602 (2012)

    Article  ADS  Google Scholar 

  25. F.L. Kien, K. Hakuta, Cavity-enhanced channeling of emission from an atom into a nanofiber. Phys. Rev. A 80, 053826 (2009)

    Article  ADS  Google Scholar 

  26. R. Yalla, M. Sadgrove, K.P. Nayak, K. Hakuta, Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity. Phys. Rev. Lett. 113, 143601 (2014)

    Article  ADS  Google Scholar 

  27. K.M. Shafi, W. Luo, R. Yalla, K. Iida, E. Tsutsumi, A. Miyanaga, K. Hakuta, Hybrid system of an optical nanofibre and a single quantum dot operated at cryogenic temperatures. Sci. Rep. 8, 13494 (2018)

    Article  ADS  Google Scholar 

  28. K.M. Shafi, W. Luo, R. Yalla, K. Hakuta, Emission characteristics for a single CdSe quantum dot on an optical nanofiber at cryogenic temperatures. J. Phys. Conf. Ser. 1220, 012025 (2019)

    Article  Google Scholar 

  29. Y. Louyer, L. Biadala, P. Tamarat, B. Lounis, Spectroscopy of neutral and charged exciton states in single CdSe/ZnS nanocrystals. Appl. Phys. Lett. 96, 203111 (2010)

    Article  ADS  Google Scholar 

  30. L. Biadala, Y. Louyer, P. Tamarat, B. Lounis, Direct observation of the two lowest exciton zero-phonon lines in single CdSe/ZnS nanocrystals. Phys. Rev. Lett. 103, 037404 (2009)

    Article  ADS  Google Scholar 

  31. M.J. Fernee, C. Sinito, Y. Louyer, C. Potzner, T. Nguyen, P. Mulvaney, P. Tamarat, B. Lounis, Magneto-optical properties of trions in non-blinking charged nanocrystals reveal an acoustic phonon bottleneck. Nat. Commun. 3, 1287 (2012)

    Article  ADS  Google Scholar 

  32. C. Javaux, B. Mahler, B. Dubertret, A. Shabaev, A.V. Rodina, Al L. Efros, D.R. Yakovlev, F. Liu, M. Bayer, G. Camps, L. Biadala, S. Buil, X. Quelin, J.-P. Hermier, Thermal activation of non-radiative Auger recombination in charged colloidal nanocrystals. Nature Nanotech. 8, 206 (2013)

    Article  ADS  Google Scholar 

  33. O. Labeau, P. Tamarat, B. Lounis, Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots. Phys. Rev. Lett. 90, 257404 (2003)

    Article  ADS  Google Scholar 

  34. D. Canneson, L. Biadala, S. Buil, X. Quelin, C. Javaux, B. Dubertret, J.-P. Hermier, Blinking suppression and biexcitonic emission in thick-shell CdSe/CdS nanocrystals at cryogenic temperature. Phys. Rev. B 89, 035303 (2014)

    Article  ADS  Google Scholar 

  35. S.A. Empedocles, M.G. Bawendi, Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots. J. Phys. Chem. B 103, 1826 (1999)

    Article  Google Scholar 

  36. A.W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, S. Takeuchi, Highly efficient coupling of nanolight emitters to a ultra-wide tunable nanofibre cavity. Sci. Rep. 5, 9619 (2016)

    Article  Google Scholar 

  37. W. Li, J. Du, V.G. Truong, S.Nic Chormaic, Optical nanofiber-based cavity induced by periodic air-nanohole arrays. Appl. Phys. Lett. 110, 253102 (2017)

    Article  ADS  Google Scholar 

  38. H. Takashima, A. Fukuda, H. Maruya, T. Tashima, A.W. Schell, S. Takeuchi, Fabrication of a nanofiber bragg cavity with high quality factor using a focused helium ion beam. Opt. Express 27, 6792 (2019)

    Article  ADS  Google Scholar 

  39. M.J. Fernee, C. Sinito, Y. Louyer, P. Tamarat, B. Lounis, The ultimate limit to the emission linewidth of single nanocrystals. Nanotechnology 24, 465703 (2013)

    Article  ADS  Google Scholar 

  40. K.P. Nayak, P. Zhang, K. Hakuta, Optical nanofiber-based photonic crystal cavity. Opt. Lett. 39, 232 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Science and Technology Agency (JST) through Strategic Innovation Program (Grant No. JPMJSV0918). We acknowledge the contributions of Kazunori Iida and Emi Tsutsumi, in the preparation of the thick shell quantum dot samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kali P. Nayak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafi, K.M., Nayak, K.P., Miyanaga, A. et al. Efficient fiber in-line single photon source based on colloidal single quantum dots on an optical nanofiber. Appl. Phys. B 126, 58 (2020). https://doi.org/10.1007/s00340-020-7407-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-7407-5

Navigation