Skip to main content
Log in

A frequency-modulated-continuous-wave laser detection system based on the four-quadrant photodetector

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A frequency-modulated-continuous-wave (FMCW) laser detection system based on the four-quadrant photodetector was presented in this paper. The cross-power-spectral-density (CPSD) algorithm was introduced to remove the incoherent noise in the four-quadrant signal spectrums. Some traditional denoising methods, including the empirical mode decomposition direct wavelet thresholding method, EMD interval thresholding method, correlation-based EMD partial reconstruction, fast Fourier transform and wavelet transformation, were investigated to provide a comparison with the CPSD algorithm. Both the simulation and experiment results show a superior performance of the four-quadrant detection system using CPSD algorithm. A better signal-to-noise ratio of the target echo to smoke interference was obviously increased to 6.3 dB under the smoke interference conditions. The relative error of this detection system was reduced from 7.36 to 1.36\(\%\), and its absolute error was less than 0.15 m. Therefore, this study was helpful in improving anti-interference ability of FMCW laser detection system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.L. Stann, W.C. Ruff et al., Optical Eng. 35, 11 (1996)

    Article  Google Scholar 

  2. B. Journet, G. Bazin, IEEE Trans. Instrum. Meas. 49, 840–843 (2000)

    Article  Google Scholar 

  3. A.G. Stove, IEE Proc.-F Radar Signal Process. 139, 343–350 (1992)

    Article  ADS  Google Scholar 

  4. A. Meta, P. Hoogeboom et al., IEEE Trans. Geosci. Remote Sensing 45, 3519–3532 (2007)

    Article  ADS  Google Scholar 

  5. F. Millioz, M. Davies, IEEE Trans. Signal Process. 60, 2800–2813 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  6. P.R. White, IET Signal Process. 6, 478–483 (2012)

    Article  MathSciNet  Google Scholar 

  7. L.M. Manojlovic, Z.P. Barbaric, IEEE Trans. Instrum. Meas. 58, 681–690 (2009)

    Article  Google Scholar 

  8. M. Toyoda, K. Araki et al., Optical Eng. 41, 145–149 (2002)

    Article  ADS  Google Scholar 

  9. N. Sampietro, G. Accomando et al., IEEE Trans. Instrum. Meas. 49, 820–822 (2000)

    Article  Google Scholar 

  10. W.G. Ho, R. Gharpurey, IEEE Int. Symp. Circuits Syst. IEEE 19, 2197–2200 (2011)

    Google Scholar 

  11. Z.P. Feng, M. Liang et al., Mech. Syst. Signal Process. 38, 165–205 (2013)

    Article  ADS  Google Scholar 

  12. D.L. Donoho, I.M. Johnstone, Biometrika 81, 425–455 (1994)

    Article  MathSciNet  Google Scholar 

  13. D.L. Donoho, IEEE Trans. Inf. Theory 41, 613–627 (2002)

    Article  Google Scholar 

  14. R. Yan, R.X. Gao et al., Signal Process. 96, 1–15 (2014)

    Article  Google Scholar 

  15. N.E. Huang, S. Zheng et al., R. Soc. 454, 903–995 (1998)

    Article  Google Scholar 

  16. N.E. Huang, S.R. Long et al., Adv. Appl. Mech. 32, 59–117 (1996)

    Article  Google Scholar 

  17. N.E. Huang, H.H. Shih, J. Phys. Oceanogr. 30, 2001–2012 (2001)

    Article  ADS  Google Scholar 

  18. Y.G. Lei, J. Lin et al., Mech. Syst. Signal Process. 35, 108–126 (2013)

    Article  ADS  Google Scholar 

  19. Y. Kopsinis, S. Mclaughlin, in 1st IAPR International Workshop on Cognitive Information Processing, CIP, 2008

  20. Y. Kopsinis, S. Mclaughlin, in Proceedings of the 16th European Signal Processing Conference, EUSIPCO, 2008

  21. Y. Kopsinis, S. Mclaughlin, IEEE Trans. Signal Process. 57, 1351–1362 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. E. Wolf, J. Optical Soc. Am. 72, 343–351 (1982)

    Article  ADS  Google Scholar 

  23. D.W. Illig, A. Laux, R.W. Lee, W.D. Jemison, L.J. Mullen, in SPIE Proceedings of Ocean Sensing and Monitoring VII, 94590B, ed. by W.W. Hou, R.A. Arnone. FMCW optical ranging technique in turbid waters, vol 9459 (2015)

  24. B.H. Liu, C.T. Song et al., Optical Rev. (2018) https://doi.org/10.1007/s10043-018-0406-7

    Article  Google Scholar 

  25. M. Grabner, V. Kvicera, Optics Exp. 19, 3379–3386 (2011)

    Article  ADS  Google Scholar 

  26. A.E.S. Green, R.P. Singhal, J. Air Pollut. Control Assoc. 30, 773–776 (1980)

    Article  Google Scholar 

  27. J.E. Sinko, B.I. Oh, AIP Conf. Proc. 1402, 245–257 (2011)

    Article  ADS  Google Scholar 

  28. H.C. Van de Hulst, V. Twersky, Light Scattering by Small Particles (Wiley Press, New York, 1957)

    Google Scholar 

  29. L. Heming, W. Qianqian et al., Semiconductor Lasers Appl. VII (2016) https://doi.org/10.1117/12.2246369

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the General Amrmament Department Key Program of China (Grant No. 5130502103). We are grateful for the experimental conditions and essay polishing help from Professor Li and Dr. Duan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengtian Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Song, C., Li, Y. et al. A frequency-modulated-continuous-wave laser detection system based on the four-quadrant photodetector. Appl. Phys. B 124, 186 (2018). https://doi.org/10.1007/s00340-018-7043-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7043-5

Navigation