Skip to main content
Log in

Optical frequency comb generation based on the dual-mode square microlaser and a nonlinear fiber loop

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A novel approach using a dual-mode square microlaser as the pump source is demonstrated to produce wideband optical frequency comb (OFC). The enhanced nonlinear frequency conversion processes are accomplished in a nonlinear fiber loop, which can reduce the stimulated Brillouin scattering threshold and then generate a dual-mode Brillouin laser with improved optical signal-to-noise ratio. An OFC with 130 nm bandwidth and 76 GHz repetition rate is successfully generated under the four-wave mixing, and the number of the comb lines is enhanced by ~ 26 times compared with the system without fiber loop. In addition, the repetition rate of the comb can be adjusted by changing the injection current of the microlaser. The pulse width of the comb spectrum is also compressed from 3 to 1 ps with an extra amplification-nonlinear process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Udem, R. Holzwarth, T.W. Hansch, Nature 416, 233–237 (2002)

    Article  ADS  Google Scholar 

  2. M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, Science 311, 1595–1599 (2006)

    Article  ADS  Google Scholar 

  3. V. Torres-Company, A.M. Weiner, Laser Photon. Rev. 8, 368–393 (2014)

    Article  Google Scholar 

  4. Z. Jiang, D.E. Leaird, A.M. Weiner, J. Lightwave Technol. 24, 2487–2494 (2006)

    Article  ADS  Google Scholar 

  5. P.J. Delfyett, S. Gee, M.T. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, T. Yilmaz, J. Lightwave Technol. 24, 2701–2719 (2006)

    Article  ADS  Google Scholar 

  6. D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff, Science 288, 635–639 (2000)

    Article  ADS  Google Scholar 

  7. T.J. Kippenberg, R. Holzwarth, S. Diddams, Science 332, 555–559 (2011)

    Article  ADS  Google Scholar 

  8. P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, T.J. Kippenberg, Phys. Rev. Lett. 107, 063901 (2011)

    Article  ADS  Google Scholar 

  9. P. Del’Haye, A. Coillet, T. Fortier, K. Beha, D.C. Cole, K.Y. Yang, H. Lee, K.J. Vahala, S.B. Papp, S.A. Diddams, Nat. Photon. 10, 516–520 (2016)

    Article  ADS  Google Scholar 

  10. J. Fatome, S. Pitois, G. Millot, IEEE J. Quantum Electron. 42, 1038–1046 (2006)

    Article  ADS  Google Scholar 

  11. V. Ataie, E. Myslivets, B.P.P. Kuo, N. Alic, S. Radic, J. Lightwave Technol. 32, 840–846 (2014)

    Article  ADS  Google Scholar 

  12. E. Myslivets, B.P.P. Kuo, N. Alic, S. Radic, Opt. Express 20, 3331–3344 (2012)

    Article  ADS  Google Scholar 

  13. A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, M. Koch, IEEE J. Sel. Top. Quantum Electron. 14, 289–294 (2008)

    Article  Google Scholar 

  14. S. Hoffmann, M. Hofmann, M. Kira, S.W. Koch, Semicond. Sci. Technol. 20, S205–S210 (2005)

    Article  ADS  Google Scholar 

  15. H.Z. Weng, Y.Z. Huang, X.W. Ma, F.L. Wang, M.L. Liao, Y.D. Yang, J.L. Xiao, IEEE Photon.Technol. Lett. 29, 1931–1934 (2017)

    Article  ADS  Google Scholar 

  16. H.Z. Weng, Y.Z. Huang, X.W. Ma, Y.D. Yang, J.L. Xiao, J.Y. Han, M.L. Liao, IEEE Photon. J. 10, 7102009 (2018)

    Google Scholar 

  17. J.F. Zhao, C. Zhang, Z.H. Li, C.Y. Miao, H. Gu, Z.R. Tong, X.D. Sun, J.J. Bai, Laser Phys. 24, 105102 (2014)

    Article  ADS  Google Scholar 

  18. Q. Li, Z.X. Jia, Z.R. Li, Y.D. Yang, J.L. Xiao, S.W. Chen, G.S. Qin, Y.Z. Huang, W.P. Qin, AIP Adv. 7, 075215 (2017)

    Article  ADS  Google Scholar 

  19. K.M. Imrul, M. Rochette, Opt. Lett. 42, 2718–2721 (2017)

    Article  ADS  Google Scholar 

  20. Y.D. Yang, Y.Z. Huang, J. Phys. D Appl. Phys. 49, 253001 (2016)

    Article  ADS  Google Scholar 

  21. L.X. Zou, Y.Z. Huang, X.M. Lv, H. Long, J.L. Xiao, Y. Du, Appl. Phys. B 117, 453–458 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant nos. 61527823, and 61377105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Zhen Huang.

Additional information

This article is part of the topical collection “Mid-infrared and THz Laser Sources and Applications” guest edited by Wei Ren, Paolo De Natale and Gerard Wysocki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, HZ., Han, JY., Li, Q. et al. Optical frequency comb generation based on the dual-mode square microlaser and a nonlinear fiber loop. Appl. Phys. B 124, 91 (2018). https://doi.org/10.1007/s00340-018-6959-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6959-0

Navigation