Skip to main content
Log in

Quantifying uncertainty in auto-compensating laser-induced incandescence parameters due to multiple nuisance parameters

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Auto-compensating laser-induced incandescence (AC-LII) can be used to infer the particle volume fraction of a soot-laden aerosol. This estimate requires detailed knowledge of multiple model parameters (nuisance parameters), such as the absorption function of soot, calibration coefficients, and laser sheet thickness, which are imperfectly known. This work considers how uncertainties in the nuisance parameters propagate into uncertainties present in soot volume fraction (SVF) and peak particle temperature estimates derived from LII data. The uncertainty of the nuisance parameters is examined and modeled using maximum entropy prior distributions. This uncertainty is then incorporated into the estimates of SVF and peak temperature through a rigorous marginalization technique. Marginalization is carried out using a Gaussian approximation, which is a fast alternative to techniques previously employed to compute uncertainties of AC-LII-derived quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. A. Melton, Appl. Opt. 23, 2201 (1984)

    Article  ADS  Google Scholar 

  2. D. R. Snelling, G. J. Smallwood, F. Liu, O. L. Gulder, W. D. Bachalo, Appl. Opt. 44, 6773 (2005)

    Article  ADS  Google Scholar 

  3. S. De Iuliis, F. Migliorini, F. Cignoli, G. Zizak, Proc. Combust. Inst. 31, 869 (2007)

    Article  Google Scholar 

  4. H.A. Michelsen, C. Schulz, G.J. Smallwood, S. Will. Prog. Energy Combust. Sci. 51, 2 (2015)

    Article  Google Scholar 

  5. T. A. Sipkens, R. Mansmann, K. J. Daun, N. Petermann, J. T. Titantah, M. Karttunen, H. Wiggers, T. Dreier, C. Schulz, Appl. Phys. B 116, 623 (2014)

    Article  ADS  Google Scholar 

  6. A. V. Eremin, E. V. Gurentsov, Appl. Phys. A 119, 615 (2015)

    Article  ADS  Google Scholar 

  7. T. Lehre, H. Bockhorn, B. Jungfleisch, R. Suntz, Chemosphere 51, 1055 (2003)

    Article  Google Scholar 

  8. T. Lehre, B. Jungfleisch, R. Suntz, H. and Bockhorn, Appl. Opt. 42, 2021 (2003)

    Article  ADS  Google Scholar 

  9. R. Starke, B. Kock, P. Roth, Shock Waves 12, 351 (2003)

    Article  ADS  Google Scholar 

  10. A. Eremin, E. Gurentsov, E. Popova, K. Priemchenko, Appl. Phys. B 104, 289 (2011)

    Article  ADS  Google Scholar 

  11. T. Sipkens, G. Joshi, K.J. Daun, Y. Murakami, J. Heat Transfer 135, 052401 (2013)

    Article  Google Scholar 

  12. K. Daun, B. Stagg, F. Liu, G. Smallwood, D. Snelling, Appl. Phys. B 87, 363 (2007)

    Article  ADS  Google Scholar 

  13. B. Crosland, M. Johnson, K. Thomson, Appl. Phys. B 102, 173 (2011)

    Article  ADS  Google Scholar 

  14. J. Kaipio, E. Somersalo, Statistical and Computational Inverse Problems. (Springer Science & Business Media, New York, 2006)

    MATH  Google Scholar 

  15. P. J. Hadwin, T. A. Sipkens, K. A. Thomson, F. Liu, K. J. Daun, Appl. Phys. B 122, 1 (2016)

    Article  ADS  Google Scholar 

  16. T. A. Sipkens, N. R. Singh, K. J. Daun, N. Bizmark, M. Ioannidis, Appl. Phys. B 119, 561 (2015)

    Article  Google Scholar 

  17. T. A. Sipkens, N. R. Singh, K. J. Daun, Appl. Phys. B 123, 1 (2017)

    Article  Google Scholar 

  18. D. Snelling, K. Thomson, F. Liu, G. Smallwood, Appl. Phys. B 96, 657 (2009)

    Article  ADS  Google Scholar 

  19. J. Liu, Monte Carlo Strategies in Scientific Computing. (Springer Science & Business Media, New York, 2013)

    Google Scholar 

  20. F. Liu, B.J. Stagg, D.R. Snelling, G.J. Smallwood, Int. J. Heat Mass Transfer 49, 777 (2006)

    Article  Google Scholar 

  21. C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333 (2006)

    Article  ADS  Google Scholar 

  22. C. Fox, G. Nicholls, The art and science of Bayesian image analysis (Leeds, UK, 1997)

  23. V. Kolehmainen, T. Tarvainen, S. R. Arridge, J. P. Kaipio, Int J Unvertainty Quantif. 1, 1 (2011)

  24. A. Christen, C. Fox, J. Comput. Gr. Stat. 14, 795 (2005)

    Article  Google Scholar 

  25. O. Cappé, E. Moulines, T. Rydén, Inference in Hidden Markov Models (Springer, 2005)

  26. C.P. Robert, G. Casella, Monte Carlo Statistical Methods (Springer, 2004)

  27. J. Nocedal, S. Wright, Numerical Optimization (Springer, 2000)

  28. J. Kaipio, V. Kolehmainen, Bayesian Theory and Applications. (Oxford University Press, (Oxford, 2013)

    Google Scholar 

  29. C. E. Shannon, Bell Syst. Tech 27, 379 (1948)

    Article  Google Scholar 

  30. E.T. Jaynes, IEEE Trans. Syst. Sci. Cybern 4, 227 (1968)

    Article  Google Scholar 

  31. E.T. Jaynes, Phys. Rev 106, 620 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  32. T.C. Bond, R.W. Bergstrom, Aerosol Sci. Technol. 40, 27 (2006)

    Article  Google Scholar 

  33. E. Therssen, Y. Bouvier, C. Schoemaecker-Moreau, X. Mercier, P. Desgroux, M. Ziskind and C. Focsa, Appl. Phys. B 89, 417 (2007)

    Article  ADS  Google Scholar 

  34. G. Cléon, T. Amodeo, A. Faccinetto, P. Desgroux, Appl. Phys. B 104, 297 (2011)

    Article  ADS  Google Scholar 

  35. H. Bladh, J. Johnsson, N.-E. Olofsson, A. Bohlin, P.-E. Bengtsson, Proc. Combust. Inst. 33, 641 (2011)

    Article  Google Scholar 

  36. X. López-Yglesias, P.E. Schrader, H.A. Michelsen, J. Aerosol Sci 75, 43 (2014)

    Article  Google Scholar 

  37. F. Migliorini, K. A. Thomson, G. J. Smallwood, Appl. Phys. B 104, 273 (2011)

    Article  ADS  Google Scholar 

  38. H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003)

    Article  ADS  Google Scholar 

  39. J. Zerbs, K. P. Geigle, O. Lammel, J. Hader, R. Stirn, R. Hadef, W. Meier, Appl. Phys. B 96, 683 (2009)

    Article  ADS  Google Scholar 

  40. F. Liu, G. J. Smallwood, J. Quant. Spectrosc. Radiat. Transf. 111, 302 (2010)

  41. J. Yon, F. Liu, A. Bescond, C. Caumont-Prim, C. Rozé, F.-X. Ouf, A. Coppalle, J. Quant. Spectrosc. Radiat. Transf. 113, 374 (2014)

    Article  ADS  Google Scholar 

  42. A. R. Coderre, K. A. Thomson, D. R. Snelling, M. R. Johnson, Appl. Phys. B 104, 175 (2011)

    Article  ADS  Google Scholar 

  43. I.T. Jolliffe, Principal Component Analysis (Springer Science & Business Media, 2002)

  44. H. A. Michelsen, F. Liu, B. F. Kock, H. Bladh, M. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Heimann, S. Will, P. E. Bengtsson, H. Bockhorn, F. Foucher, K. P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, Appl. Phys. B 87, 503 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Natural Sciences and Engineering Research Council Discovery Grant (NSERC-DG) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Hadwin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadwin, P.J., Sipkens, T.A., Thomson, K.A. et al. Quantifying uncertainty in auto-compensating laser-induced incandescence parameters due to multiple nuisance parameters. Appl. Phys. B 123, 114 (2017). https://doi.org/10.1007/s00340-017-6693-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6693-z

Keywords

Navigation