Skip to main content
Log in

Optimal control for Rydberg quantum technology building blocks

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We consider a platform for quantum technology based on Rydberg atoms in optical lattices where each atom encodes one qubit of information and external lasers can manipulate their state. We demonstrate how optimal control theory enables the functioning of two specific building blocks on this platform: We engineer an optimal protocol to perform a two-qubit phase gate and to transfer the information within the lattice among specific sites. These two elementary operations allow to design very general operations like storage of atoms and entanglement purification as, for example, needed for quantum repeaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.-J. Briegel, W. Dür, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

  2. L.-M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Nature 414, 413 (2001)

    Article  ADS  Google Scholar 

  3. B. Zhao, M. Müller, K. Hammerer, P. Zoller, Phys. Rev. A 81, 052329 (2010)

    Article  ADS  Google Scholar 

  4. Y. Han, B. He, K. Heshami, C.-Z. Li, C. Simon, Phys. Rev. A 81, 052311 (2010)

    Article  ADS  Google Scholar 

  5. E. Brion, F. Carlier, V.M. Akulin, K. Mølmer, Phys. Rev. A 85, 042324 (2012)

    Article  ADS  Google Scholar 

  6. H. Wu, Z.-B. Yang, L.-T. Shen, S.-B. Zheng, J. Phys. B At. Mol. Opt. Phys. 46, 185502 (2013)

    Article  ADS  Google Scholar 

  7. L. Li, Y.O. Dudin, A. Kuzmich, Nature 498, 466 (2013)

    Article  ADS  Google Scholar 

  8. M. Müller, I. Lesanovsky, H. Weimer, H.P. Büchler, P. Zoller, Phys. Rev. Lett. 102, 170502 (2009)

    Article  Google Scholar 

  9. M. Saffman, T.G. Walker, Phys. Rev. A 66, 065403 (2002)

    Article  ADS  Google Scholar 

  10. Y.O. Dudin, A. Kuzmich, Science 336, 887 (2012)

    Article  ADS  Google Scholar 

  11. R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Löw, L. Santos, T. Pfau, Phys. Rev. Lett. 99, 163601 (2007)

    Article  ADS  Google Scholar 

  12. M. Saffman, T.G. Walker, K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010)

    Article  ADS  Google Scholar 

  13. L.H. Pedersen, K. Mølmer, Phys. Rev. A 79, 012320 (2009)

    Article  ADS  Google Scholar 

  14. M.M. Müller, A. Kölle, R. Löw, T. Pfau, T. Calarco, S. Montangero, Phys. Rev. A 87, 053412 (2013)

    Article  ADS  Google Scholar 

  15. Y. Miroshnychenko, U.V. Poulsen, K. Mølmer, Phys. Rev. A 87, 023821 (2013)

    Article  ADS  Google Scholar 

  16. M.M. Müller, H.R. Haakh, T. Calarco, C.P. Koch, C. Henkel, Quant. Inf. Proc. 10, 771–792 (2011)

    Article  Google Scholar 

  17. M.M. Müller, M. Murphy, S. Montangero, T. Calarco, P. Grangier, A. Browaeys, Phys. Rev. A 89, 032334 (2014)

    Article  ADS  Google Scholar 

  18. F. Caruso, V. Giovannetti, C. Lupo, S. Mancini, Rev. Mod. Phys. 86, 1203 (2014)

    Article  ADS  Google Scholar 

  19. P. Schauß, M. Cheneau, M. Endres, T. Fukuhara, S. Hild, A. Omran, T. Pohl, C. Gross, S. Kuhr, I. Bloch, Nature 491, 87–91 (2012)

    Article  ADS  Google Scholar 

  20. P. Schauß, J. Zeiher, T. Fukuhara, S. Hild, M. Cheneau, T. Macrì, T. Pohl, I. Bloch, C. Gross, Science 347, 6229 (2015)

    Article  Google Scholar 

  21. Yao Weimer, C.R. Laumann, M.D. Lukin, Phys. Rev. Lett. 108, 100501 (2012)

  22. C. Brif, R. Chakrabarti, H. Rabitz, New J. Phys. 12, 075008 (2010)

    Article  ADS  Google Scholar 

  23. D. Jaksch, J.I. Cirac, P. Zoller, S.L. Rolston, R. Côté, M.D. Lukin, Phys. Rev. Lett. 85, 2208 (2000)

    Article  ADS  Google Scholar 

  24. A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Vitaeu, D. Comparat, P. Pillet, A. Browaeys, P. Grangier, Nat. Phys. 5, 115 (2009)

    Article  Google Scholar 

  25. L. Isenhower, E. Urban, X.L. Zhang, A.T. Gill, T. Henage, T.A. Johnson, T.G. Walker, M. Saffman, Phys. Rev. Lett. 104, 010503 (2010)

    Article  ADS  Google Scholar 

  26. Y. Miroshnychenko, A. Gaëtan, C. Evellin, P. Grangier, D. Comparat, P. Pillet, T. Wilk, A. Browaeys, Phys. Rev. A 82, 013405 (2010)

    Article  ADS  Google Scholar 

  27. T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, A. Browaeys, Phys. Rev. Lett. 104, 010502 (2010)

    Article  ADS  Google Scholar 

  28. X.L. Zhang, A.T. Gill, L. Isenhower, T.G. Walker, M. Saffman, Phys. Rev. A 85, 042310 (2012)

    Article  ADS  Google Scholar 

  29. M. Saffman, T.G. Walker, Phys. Rev. A 72, 042302 (2005)

    Article  ADS  Google Scholar 

  30. L. Isenhower, M. Saffman, K. Mülmer, Quant. Inf. Proc. 10, 755 (2011)

    Article  Google Scholar 

  31. H.-Z. Wu, Z.-B. Yang, S.-B. Zheng, Phys. Rev. A 82, 034307 (2010)

    Article  ADS  Google Scholar 

  32. D.D.B. Rao, K. Mülmer, Phys. Rev. A 89, 030301 (2014). (R)

    Article  ADS  Google Scholar 

  33. Y. Liang, Q.-C. Wu, S.-L. Su, X. Ji, S. Zhang, Phys. Rev. A 91, 032304 (2015)

    Article  ADS  Google Scholar 

  34. J. Zhang, J. Vala, S. Sastry, K.B. Whaley, Phys. Rev. Lett. 91, 027903 (2003)

    Article  ADS  Google Scholar 

  35. T. Calarco, J.I. Cirac, P. Zoller, Phys. Rev. A 63, 062304 (2008)

    Article  ADS  Google Scholar 

  36. J. Reichel, V. Vuletić (eds.), Atom Chips (Wiley-VCH, Germany, 2011)

    Google Scholar 

  37. I. Bloch, Nature 453, 1016–1022 (2008)

    Article  ADS  Google Scholar 

  38. R. Löw, H. Weimer, J. Nipper, J.B. Balewski, B. Butscher, H.P. Büchler, T. Pfau, J. Phys. B. At. Mol. Opt. Phys. 45, 113001 (2012)

    Article  ADS  Google Scholar 

  39. E. Brion, L.H. Pedersen, K. M(ø)lmer, J. Phys. A 40, 1033 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  40. J.A. Nelder, R. Mead, Comput. J. 7, 308 (1965)

    Article  Google Scholar 

  41. A.I. Konnov and V.F. Krotov. Automation and Remote Control, Vol. 60, No. 10 (1999)

  42. S. Sklarz, D. Tannor, Phys. Rev. A 66, 053619 (2002)

    Article  ADS  Google Scholar 

  43. J.P. Palao, R. Kosloff, Phys. Rev. A 68, 062308 (2003)

    Article  ADS  Google Scholar 

  44. S. White, Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  Google Scholar 

  45. U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005)

    Article  ADS  Google Scholar 

  46. P. Doria, T. Calarco, S. Montangero, Phys. Rev. Lett. 106, 190501 (2011)

    Article  ADS  Google Scholar 

  47. T. Caneva, T. Calarco, S. Montangero, Phys. Rev. A 84, 022326 (2011)

    Article  ADS  Google Scholar 

  48. N. Rach, M.M.Müller, T. Calarco, and S. Montangero, arXiv:1506.04601 (2015)

  49. S. Lloyd, S. Montangero, Phys. Rev. Lett. 113, 010502 (2014)

    Article  ADS  Google Scholar 

  50. T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Giovannetti, G.E. Santoro, Phys. Rev. Lett. 103, 240501 (2009)

    Article  ADS  Google Scholar 

  51. D. A. Steck, “Rubidium 87 D Line Data,” available online at http://steck.us/alkalidata (revision 2.1.4, 23 December 2010)

  52. This work was performed on the computational resource bwUniCluster funded by the Ministry of Science, Research and Arts and the Universities of the State of Baden-Württemberg, Germany, within the framework program bwHPC

Download references

Acknowledgments

The authors acknowledge support from SFB/TRR21, Q.com, the EU project RYSQ, and we thank the bwUniCluster [52] for the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias M. Müller.

Additional information

This paper is part of the topical collection “Quantum Repeaters: From Components to Strategies” guest edited by Manfred Bayer, Christoph Becher and Peter van Loock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, M.M., Pichler, T., Montangero, S. et al. Optimal control for Rydberg quantum technology building blocks. Appl. Phys. B 122, 104 (2016). https://doi.org/10.1007/s00340-016-6383-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6383-2

Keywords

Navigation