Skip to main content
Log in

Fragmentation dynamics of methane induced by femtosecond laser pulses

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this study it has been carried out theoretical simulations of ab-initio molecular dynamics of the C–H photo-dissociation of methane induced by femtosecond laser pulses. Our discussion about the reaction mechanism leading to the formation of the H and \(\hbox {CH}_{3}\) fragments is based on the rectification of the Lorentz force. Such an electric force rectification occurs via a periodical charge transfer between H and \(\hbox {CH}_{3}\) induced by the strong infrared laser pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.R. Rostrup-Nielsen, Catal. Today 63, 159 (2000)

    Article  Google Scholar 

  2. J.H. Lunsford, Catal. Today 63, 165 (2000)

    Article  Google Scholar 

  3. T.V. Choudhary, E. Aksoylu, D.W. Goodman, Catal. Rev. 45, 151 (2003)

    Article  Google Scholar 

  4. V. Degirmenci, D. Uner, A. Yilmaz, Catal. Today 106, 252 (2005)

    Article  Google Scholar 

  5. B. Michalkiewicz, Appl. Catal. A Gen. 307, 270 (2006)

    Article  Google Scholar 

  6. L. Chen, B. Yang, X. Zhang, W. Dong, K. Cao, X.P. Zhang, Energy Fuels 20, 915 (2006)

    Article  Google Scholar 

  7. W. Dai, H. Yu, Q. Chen, Y.X. Yin, X.Y. Dai, Plasma Sci. Technol. 7, 3132 (2005)

    Article  ADS  Google Scholar 

  8. J.A. Labinger, J.E. Bercaw, Nature 417, 507 (2002)

    Article  ADS  Google Scholar 

  9. R.L. Lieberman, A.C. Rosenzweig, Nature 434, 177 (2002)

    Article  ADS  Google Scholar 

  10. J.K. Perry, G. Ohanessian, W.A. Goddard III, Organometallics 13, 1870 (1994)

    Article  Google Scholar 

  11. R.A. Periana, D.J. Taube, S. Gamble, H. Taube, T. Satoh, H. Fujii, Science 280, 560 (1998)

    Article  ADS  Google Scholar 

  12. M. Svensson, P.E.M. Siegbahn, M.R.A. Blomberg, J. Phys. Chem. 95, 4313 (1991)

    Article  Google Scholar 

  13. M. Svensson, P.E.M. Siegbahn, M.R.A. Blomberg, J. Am. Chem. Soc. 114, 6095 (1992)

    Article  Google Scholar 

  14. M. Svensson, P.E.M. Siegbahn, M.R.A. Blomberg, J. Phys. Chem. 98, 2062 (1994)

    Article  Google Scholar 

  15. A.M.C. Wittborn, M. Costas, M.R.A. Blomberg, P.E.M. Siegbahn, J. Phys. Chem. 107, 4318 (1997)

    Article  Google Scholar 

  16. R.H. Crabtree, Chem. Rev. 95, 987 (1995)

    Article  Google Scholar 

  17. K.J. de Almeida, A. Cesar, Organometallics 25, 3407 (2006)

    Article  Google Scholar 

  18. W.R. Simpson, A.J. Orr-Ewing, R.N. Zare, Chem. Phys. Lett. 212, 163 (1993)

    Article  ADS  Google Scholar 

  19. W.R. Simpson, T.P. Rakitzis, A.J. Orr-Ewing, S.A. Kandel, R.N. Zare, J. Chem. Phys. 103, 7313 (1995)

    Article  ADS  Google Scholar 

  20. W.R. Simpson, T.P. Rakitzis, S.A. Kandel, T. Levon, R.N. Zare, J. Chem. Phys. 100, 7938 (1996)

    Article  Google Scholar 

  21. A.J. Orr-Ewing, W.R. Simpson, T.P. Rakitzis, S.A. Kandel, R.N. Zare, J. Chem. Phys. 106, 5961 (1997)

    Article  ADS  Google Scholar 

  22. S.A. Kandel, R.N. Zare, J. Chem. Phys. 109, 9719 (1998)

    Article  ADS  Google Scholar 

  23. Z.H. Kim, H.A. Bechtel, R.N. Zare, J. Am. Chem. Soc. 123, 12714 (2001)

    Article  Google Scholar 

  24. L.B.F. Juurlink, P.R. Mccabe, R.R. Smith, C.L. Dicologero, A.L. Utz, Phys. Rev. Lett. 83, 868 (1999)

    Article  ADS  Google Scholar 

  25. M.P. Schmid, P. Maroni, R.D. Beck, T.R. Rizzo, J. Chem. Phys. 117, 8603 (2002)

    Article  ADS  Google Scholar 

  26. R.D. Beck, P. Maroni, D.C. Papageorgopoulos, T.T. Dang, M.P. Schmid, T.R. Rizzo, Science 302, 98 (2003)

    Article  ADS  Google Scholar 

  27. R.R. Smith, D.R. Killelea, D.F. DelSesto, A.L. Utz, Science 304, 992 (2004)

    Article  ADS  Google Scholar 

  28. S. Wang, X. Tang, L. Gao, M.E. Elshakre, F. Kong, J. Chem. Phys. A 107, 6123 (2003)

    Article  Google Scholar 

  29. Z. Wu, C. Wu, Q. Liang, S. Wang, M. Liu, Y. Deng, Q. Gong, J. Chem. Phys. 126, 074311 (2007)

    Article  ADS  Google Scholar 

  30. E. Irani, R. Sadighi-Bonabi, A. Anvari, Chem. Phys. Lett. 604, 60 (2014)

    Article  ADS  Google Scholar 

  31. S. Koseki, N. Shimakura, Y. Teranishi, S.H. Lin, Y. Fujimura, J. Phys. Chem. A 117, 333 (2013)

    Article  Google Scholar 

  32. H. Xu, A. Azarm, S.L. Chin, Chin. Opt. Lett. 12, 113201 (2014)

    Article  ADS  Google Scholar 

  33. A.H. Zewail, J. Phys. Chem. A 104, 5660 (2000)

    Article  Google Scholar 

  34. V.C. Felicíssimo, F.F. Guimarães, F. Gel’mukhanov, A. Cesar, H. Ågren, J. Chem. Phys. 122, 094319 (2005)

    Article  ADS  Google Scholar 

  35. Y. Tu, V.C. Felicíssimo, F.F. Guimarães, H. Ågren, F. Gel’mukhanov, Phys. Scr. 80, 055801 (2009)

    Article  ADS  Google Scholar 

  36. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

    Google Scholar 

  37. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  38. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  39. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002)

    Article  ADS  Google Scholar 

  40. V.C. Felicíssimo, J. da Rocha Martins, I.S. Boldt, H. Chacham, Phys. Rev. A 80, 063410 (2009)

    Article  ADS  Google Scholar 

  41. D.L. Gray, A.G. Robiette, Mol. Phys. 37, 1901 (1979)

    Article  ADS  Google Scholar 

  42. B. Ruscic, M. Litorja, R.L. Asher, J. Phys. Chem. A 103, 8625 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brazilian agencies FAPITEC/SE (Fundação de Apoio à Pesquisa e à Inovação Tecnológica do Estado de Sergipe) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviane Costa Felicíssimo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santana, A.J., da Silva, D.A., Machado, E.S. et al. Fragmentation dynamics of methane induced by femtosecond laser pulses. Appl. Phys. B 122, 28 (2016). https://doi.org/10.1007/s00340-015-6303-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-015-6303-x

Keywords

Navigation