Skip to main content
Log in

Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A mid-infrared laser absorption sensor was developed for gas temperature and carbon oxide (CO, CO2) concentrations in high-enthalpy, hydrocarbon combustion flows. This diagnostic enables non-intrusive, in situ measurements in harsh environments produced by hypersonic propulsion ground test facilities. The sensing system utilizes tunable quantum cascade lasers capable of probing the fundamental mid-infrared absorption bands of CO and CO2 in the 4–5 µm wavelength domain. A scanned-wavelength direct absorption technique was employed with two lasers, one dedicated to each species, free-space fiber-coupled using a bifurcated hollow-core fiber for remote light delivery on a single line of sight. Scanned-wavelength modulation spectroscopy with second-harmonic detection was utilized to extend the dynamic range of the CO measurement. The diagnostic was field-tested on a direct-connect scramjet combustor for ethylene–air combustion. Simultaneous, laser-based measurements of carbon monoxide and carbon dioxide provide a basis for evaluating combustion completion or efficiency with temporal and spatial resolution in practical hydrocarbon-fueled engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.M. Tishkoff, J.P. Drummond, T. Edwards, A.S. Nejad, in Future Directions of Supersonic Combustion ResearchAir Force/NASA Workshop on Supersonic Combustion. 35th Aerospace Sciences Meeting and Exhibit (1997)

  2. G. Rieker, J. Jeffries, R. Hanson, T. Mathur, M. Gruber, C. Carter, Diode laser-based detection of combustor instabilities with application to a scramjet engine. Proc. Combust. Inst. 32, 831–838 (2009)

    Article  Google Scholar 

  3. J.T.C. Liu, G.B. Rieker, J.B. Jeffries, M.R. Gruber, C.D. Carter, T. Mathur, R.K. Hanson, Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor. Appl. Opt. 44, 6701 (2005)

    Article  ADS  Google Scholar 

  4. F. Li, X. Yu, H. Gu, Z. Li, Y. Zhao, L. Ma, L. Chen, X. Chang, Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors. Appl. Opt. 50, 6697–6707 (2011)

    Article  ADS  Google Scholar 

  5. A. Griffiths, A. Houwing, Diode laser absorption spectroscopy of water vapor in a scramjet combustor. Appl. Opt. 44, 6653–6659 (2005)

    Article  ADS  Google Scholar 

  6. G.B. Rieker, J.B. Jeffries, R.K. Hanson, Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Opt. 48, 5546 (2009)

    Article  Google Scholar 

  7. K. Namjou, S. Cai, E.A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser. Opt. Lett. 23, 219 (1998)

    Article  ADS  Google Scholar 

  8. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010)

    Article  ADS  Google Scholar 

  9. R.M. Spearrin, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Quantum cascade laser absorption sensor for carbon monoxide in high-pressure gases using wavelength modulation spectroscopy. Appl. Opt. 53, 1938–1946 (2014)

    Article  ADS  Google Scholar 

  10. R.M. Spearrin, W. Ren, J.B. Jeffries, R.K. Hanson, Multi-band infrared CO2 absorption sensor for sensitive temperature and species measurements in high-temperature gases. Appl. Phys. B (2014). doi:10.1007/s00340-014-5772-7

  11. L. Rosenmann, S. Langlois, C. Delaye, J. Taine, Diode laser measurements of CO2 line intensities at high temperature in the 4.3 μm region. J. Mol. Spectrosc. 149, 167–184 (1991)

    Article  ADS  Google Scholar 

  12. P.L. Varghese, R.K. Hanson, Tunable infrared diode laser measurements of line strengths and collision widths of 12C16O at room temperature. J. Quant. Spectrosc. Radiat. Transf. 24, 479–489 (1980)

    Article  ADS  Google Scholar 

  13. X. Zhou, X. Liu, J.B. Jeffries, R.K. Hanson, Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser. Meas. Sci. Technol. 14, 1459–1468 (2003)

    Article  ADS  Google Scholar 

  14. U. Platt, J. Stutz, Differential Optical Absorption Spectroscopy: Principles and Applications (Springer, Berlin, 2008), p. 597

    Google Scholar 

  15. C.S. Goldenstein, C.L. Strand, I.A. Schultz, K. Sun, J.B. Jeffries, R.K. Hanson, Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes. Appl. Opt. 53, 356–367 (2014)

    Article  ADS  Google Scholar 

  16. C.S. Goldenstein, I.A. Schultz, J.B. Jeffries, R.K. Hanson, Two-color absorption spectroscopy strategy for measuring the column density and path average temperature of the absorbing species in nonuniform gases. Appl. Opt. 52, 7950–7962 (2013)

    Article  ADS  Google Scholar 

  17. X. Ouyang, P.L. Varghese, Line-of-sight absorption measurements of high temperature gases with thermal and concentration boundary layers. Appl. Opt. 28, 3979–3984 (1989)

    Article  ADS  Google Scholar 

  18. S.T. Sanders, J. Wang, J.B. Jeffries, R.K. Hanson, Diode-laser absorption sensor for line-of-sight gas temperature distributions. Appl. Opt. 40, 4404 (2001)

    Article  ADS  Google Scholar 

  19. L. Ma, X. Li, S.T. Sanders, A.W. Caswell, S. Roy, D.H. Plemmons, J.R. Gord, 50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography. Opt. Express 21, 1152–1162 (2013)

    Article  ADS  Google Scholar 

  20. J.C. McDaniel, C.P. Goyne, E.B. Bryner, D.B. Le, C.T. Smith, R.H. Krauss, in Dual-Mode Scramjet Operation at a Mach 5 Flight Enthalpy in a Clean Air Test Facility. AIP Conference Proceedings, vol. 762 (AIP, 2005), pp. 1277–1282

  21. M. Gruber, J. Donbar, Mixing and combustion studies using cavity-based flameholders in a supersonic flow. J. Propuls. Power 20, 769–778 (2004)

    Article  Google Scholar 

  22. A. Ben-Yakar, R. Hanson, Cavity flame-holders for ignition and flame stabilization in scramjets: an overview. J. Propuls. Power 17, 869–877 (2001)

    Article  Google Scholar 

  23. C.S. Goldenstein, I.A. Schultz, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Scanned-wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in a hydrocarbon-fueled scramjet combustor. Appl. Phys. B (2013). doi:10.1007/s00340-013-5755-0

  24. I.A. Schultz, C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Multispecies mid-infrared absorption measurements in a hydrocarbon-fueled scramjet combustor. J. Propuls. Power (2014) (accepted)

Download references

Acknowledgments

This work was sponsored by the National Center for Hypersonic Combined Cycle Propulsion (NCHCCP), Grant FA 9550-09-1-0611, with technical monitors Chiping Li (AFOSR) and Rick Gaffney (NASA). The authors would also like to thank Bob Rockwell, Brian Rice, and Roger Reynolds of the University of Virginia for their assistance in operating the UVaSCF facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Spearrin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spearrin, R.M., Goldenstein, C.S., Schultz, I.A. et al. Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy. Appl. Phys. B 117, 689–698 (2014). https://doi.org/10.1007/s00340-014-5884-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5884-0

Keywords

Navigation